首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The shock wave and cavitation are main effects in the far-field underwater explosion, which could cause serious damage to marine structures. In this paper, the fluid mechanical behavior of blast load is described by the propagation of pressure wave. The acoustic pressure caused by far-field explosion is determined by solving the wave equation, where a strongly discontinuous axisymmetric numerical model is established with the local discontinuous Galerkin (LDG) method. The model can calculate the dynamic pressure in the fluid field and capture the high-resolution shock wave. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the shock wave. The numerical model is verified by comparing with the analytical solution of the cavitation effect near the structure in one dimension. With the same mesh discretization, the present model shows higher precision than the results calculated by the acoustic finite element method. In addition, the propagation of shock wave in the cylindrical water column is studied. Finally, the formation, growth and collapse of the cavitation region near the free surface are simulated. The LDG model can remove the spurious oscillations behind the shock front and it’s more accurate than the results of the acoustic finite element method, in terms of capturing the sharpness of shock wave and calculating the shock and cavitation loading. And the present model can be applied to calculate the structural damage caused by shock wave in three dimensions.  相似文献   

2.
基于推板造波理论和摇板造波理论,在Open FOAM平台上采用重叠网格技术建立黏性数值波浪水槽,并使用一种结合SIMPLE算法和PISO算法的PIMPLE算法对数值模型进行求解。利用开发的数值模型通过数值收敛性测试和网格独立性测试分别重点研究了时间步长、库朗数和网格尺寸对数值精度和计算效率的影响。并对比研究了此数值模型分别嵌入层流模型和湍流模型的计算精度和计算效率。实现的规则波和二阶有限振幅波与理论结果和试验结果吻合,验证了此黏性数值波浪水槽的造波和主动消波功能。基于二维数值波浪水槽,进一步研究了三维数值造波,数值计算结果与理论结果吻合良好。研究结果不仅验证了重叠网格在二维和三维两相流体域中求解运动物体与流场交互的可靠性和正确性,而且为使用此黏性数值波浪水槽解决更复杂的海洋工程问题提供了依据。  相似文献   

3.
When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.  相似文献   

4.
适于模拟不规则水域波浪的缓坡方程两种数值模型比较   总被引:1,自引:1,他引:0  
本文分析比较了适于不规则水域波浪模拟的椭圆型缓坡方程两种数值模型。两种数值模型均采用有限体积法离散,分别基于四叉树网格和非结构化三角形网格建立。首先结合近岸缓坡地形上波浪传播的经典物理模型实验对两种数值模型分别进行了验证,并结合计算结果对比分析了两种模型的计算精度和效率。计算结果表明,两种数值模型均可有效地模拟近岸波浪的传播变形;相对非结构化三角形网格下的模型,基于四叉树网格建立的数值模型在数值离散和求解过程中无需引入形函数、不产生复杂的交叉项,离散简单,易于程序实现,且节约计算存储空间,计算效率高。  相似文献   

5.
陈锋华  赵敏 《海洋工程》2022,40(2):143-153,176
耐压结构是深海潜器的重要组成部分,但在深海的高压环境中却存在内爆的风险。为研究陶瓷耐压结构水下内爆的流场特性,使用针对可压缩多相流问题开发的开源代码,采用直接数值模拟,应用自适应直角网格,对两种压力条件下的耐压结构水下内爆进行了数值模拟。通过低压模拟结果与理论解和试验值比较,验证了模拟方法的有效性,进而开展万米级深海陶瓷耐压结构水下内爆模拟。分析发现:陶瓷耐压结构发生内爆后,其内部气腔存在多次压缩—反弹现象,深海环境压力越大则反弹越不明显;气腔反弹阶段,在结构外部将产生数倍于深海环境压力的冲击波,且传播速度接近声速;冲击波压力峰值与到球心距离呈负指数幂函数关系;在相同深海环境压力下,耐压结构外部监测点的冲击波压力与球体半径呈正比例关系。  相似文献   

6.
On the modeling of wave propagation on non-uniform currents and depth   总被引:1,自引:0,他引:1  
By transforming two different time-dependent hyperbolic mild slope equations with dissipation term for wave propagation on non-uniform currents into wave-action conservation equation and eikonal equation, respectively, shown are the different effects of dissipation term on the eikonal equation in the two different mild slope equations. The performances of intrinsic frequency and wave number are also discussed. Thus the suitable mathematical model is chosen in which the wave number vector and intrinsic frequency are expressed both more rigorously and completely. By using the perturbation method, an extended evolution equation, which is of time-dependent parabolic type, is developed from the time-dependent hyperbolic mild slope equation which exists in the suitable mathematical model, and solved by using the alternating direction implicit (ADI) method. Presented is the numerical model for wave propagation and transformation on non-uniform currents in water of slowly varying topography. From the comparisons of the numerical solutions with the theoretical solutions of two examples of wave propagation, respectively, the results show that the numerical solutions are in good agreement with the exact ones. Calculating the interactions between incident wave and current on a sloping beach [Arthur, R.S., 1950. Refraction of shallow water waves. The combined effects of currents and underwater topography. EOS Transactions, August 31, 549–552], the differences of wave number vector between refraction and combined refraction–diffraction of waves are discussed quantitatively, while the effects of different methods of calculating wave number vector on numerical results are shown.  相似文献   

7.
Zhang  Hao-chen  Liu  Shu-xue  Li  Jin-xuan  Wang  Lei 《中国海洋工程》2019,33(2):160-171
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.  相似文献   

8.
An unstructured-grid procedure for SWAN is presented. It is a vertex-based, fully implicit, finite difference method which can accommodate unstructured meshes with a high variability in geographic resolution suitable for representing complicated bottom topography in shallow areas and irregular shoreline. The numerical solution is found by means of a point-to-point multi-directional Gauss–Seidel iteration method requiring a number of sweeps through the grid. The approach is stable for any time step while permitting local mesh refinements in areas of interest. A number of applications are shown to verify the correctness and numerical accuracy of the unstructured version of SWAN.  相似文献   

9.
10.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

11.
Whipping response will happen when a ship is subjected to underwater explosion bubble load. In that condition, the hull would be broken, and even the survivability will be completely lost. A calculation method on the dynamic bending moment of bubble has been put forward in this paper to evaluate the impact of underwater explosion bubble load on the longitudinal strength of surface ships. Meanwhile the prediction equation of bubble dynamic bending moment has been concluded with the results of numerical simulation. With wave effect taken into consideration, the evaluation method of the total damage of a ship has been established. The precision of this evaluation method has been proved through the comparison with calculation results. In order to verify the validity of the calculation results, experimental data of real ship explosion is applied. Prediction equation and evaluation method proposed in this paper are to be used in ship structure design, especially in the preliminary prediction of the ultimate withstanding capability of underwater explosion damage for the integrated ship in preliminary design phase.  相似文献   

12.
《Coastal Engineering》2006,53(11):947-963
A spectral/hp element method for solving enhanced Boussinesq-type equations in two horizontal dimensions is introduced. The numerical model is based on the discontinuous Galerkin method on unstructured meshes with expansions of arbitrary order. Numerical computations are used to illustrate that the computational efficiency of the model increases with increasing (i) expansion polynomial order, (ii) integration time and (iii) relative depth. Thus, the spectral/hp element technique appears to offers potentially significant savings in computational time for a fixed numerical error, compared to low-order numerical methods, for large-scale and long-time simulations of dispersive wave propagation. The practical applicability of the model is illustrated by several test cases.  相似文献   

13.
各类抛弃式探头下沉运动的数值计算研究都需要对探头表面和整个计算域进行网格划分的前处理过程,选择不同的网格划分方法和划分精度,会影响数值计算速度和计算精度,最终生成的网格质量决定了计算结果的收敛性和准确性。针对抛弃式探头的复杂结构,对比了两种网格划分方法、三种网格划分精度,完成探头计算区域的网格划分,采用k-ε湍流模型,进行抛弃式探头下沉运动的数值计算,并将计算结果与水箱和水库实验结果进行对比,验证了混合网格划分方法和普通精度网格对抛弃式探头下沉运动数值计算的适用性,研究结果对类似较为复杂结构的水下运动体的数值计算前处理过程具有一定的参考和借鉴意义。  相似文献   

14.
《Ocean Modelling》2011,40(3-4):248-261
Accurate representation of geostrophic and hydrostatic balance is an essential requirement for numerical modelling of geophysical flows. Potentially, unstructured mesh numerical methods offer significant benefits over conventional structured meshes, including the ability to conform to arbitrary bounding topography in a natural manner and the ability to apply dynamic mesh adaptivity. However, there is a need to develop robust schemes with accurate representation of physical balance on arbitrary unstructured meshes. We discuss the origin of physical balance errors in a finite element discretisation of the Navier–Stokes equations using the fractional timestep pressure projection method. By considering the Helmholtz decomposition of forcing terms in the momentum equation, it is shown that the components of the buoyancy and Coriolis accelerations that project onto the non-divergent velocity tendency are the small residuals between two terms of comparable magnitude. Hence there is a potential for significant injection of imbalance by a numerical method that does not compute these residuals accurately. This observation is used to motivate a balanced pressure decomposition method whereby an additional “balanced pressure” field, associated with buoyancy and Coriolis accelerations, is solved for at increased accuracy and used to precondition the solution for the dynamical pressure. The utility of this approach is quantified in a fully non-linear system in exact geostrophic balance. The approach is further tested via quantitative comparison of unstructured mesh simulations of the thermally driven rotating annulus against laboratory data. Using a piecewise linear discretisation for velocity and pressure (a stabilised P1P1 discretisation), it is demonstrated that the balanced pressure decomposition method is required for a physically realistic representation of the system.  相似文献   

15.
采用LS-DYNA软件,对装药半径为0.15m、0.42m、0.55m的战斗部有、无壳体的爆炸特性进行数值模拟研究,分析了炸药在有无壳体的水下爆炸时的冲击波压力、气泡脉动压力等特性参数,对比总结了不同当量、不同装药半径及有无壳体的数值计算结果。结果表明:壳体对水下爆炸气泡脉动的影响是较为显著的。壳体厚度对气泡形成时间没有太多影响,但对气泡压力峰值影响较大。因此,研究战斗部水下爆炸威力时必须考虑壳体因素,不能简化。  相似文献   

16.
基于一种高阶Boussiensq方程(刘忠波等,2004),采用预报-校正格式的有限差分法对该方程进行了数值离散,建立了数值模型。针对动量方程中三阶项的差分形式,采用了迎风格式和五点格式。通过数值模拟常水深下不同周期波浪传播变形,指出迎风格式在计算小周期波浪时存在的问题。为进一步验证数值模型的适用性,模拟了淹没潜堤上的传播变形。从数值结果与实验值的对比结果上看,该数值模型能较好地模拟波浪变形,可用于模拟实际中的波浪场问题。  相似文献   

17.
Based on the lifting-surface vortex lattice model, a numerical design method of wake-adapted contra-rotating propellers (CRPs) for high-speed underwater vehicles is proposed. According to the given radial circulation distribution, the method can use prescribed camber line shapes to design maximum cambers and pitches of blade sections by controlling circulation at the leading edge, which makes the chordwise distribution of blade loading similar to that of NACA a = 0.8. It also can be performed under prescribed chordwise circulation distributions, where camber line shape and blade section pitch are designed. The Newton–Raphson iterative algorithm is utilised in the design of the pitch and camber. The radial circulation distribution of a set of CRPs for an underwater vehicle is used to redesign CRPs by the proposed method, and the design results are then validated via numerical simulations by solving the Reynolds-averaged Navier-Stokes equations. The results indicate that the proposed method is suitable for the design of CRPs with tapered hubs and skewed blades, and it also exhibits good mesh convergence. The CRPs designed with the given camber line shape and the given chordwise loading distribution both have relatively uniform pressure distributions, with the latter being superior.  相似文献   

18.
Abstract

In this article three main stages of tsunami wave evolution are investigated. At first, the development of disturbances from a given patched elevation of the bottom surface in an incompressible nonviscous fluid of the uniform depth is considered. Then, a tsunami wave diffraction by underwater bottom elevation or cavity is investigated. In this case the shallow water equations are already used, and it is supposed that a cylindrical wave is spread from patched water elevation over the epicentrum. Last, the tsunami propagation and transformation in a shallow water region and its run‐up on a beach are investigated on the basis of the improved shallow water theory, taking into consideration the nonlinear and dispersive terms of higher order. The proposed theory is tested in a problem of collisions of two solutions. Solutions of the first and the second problems are obtained by the method of integral Laplace's transformation with following numerical inversion of transformations. A finite difference method for a solution of the last problem is used.  相似文献   

19.
环肋圆柱壳体在水下冲击波作用下的动力弹塑性屈曲   总被引:1,自引:0,他引:1  
本文以加肋圆柱壳体为对象建立力学模型,在水下爆炸产生的冲击波作用下,考虑流体与结构的耦合效应,研究加肋圆柱壳体的弹塑性失稳变形量及动力响应特性。数值分析显示出的最终变形形状和压力变化过程与实验资料一致的  相似文献   

20.
针对波浪模式问题,将变分多尺度方法与自由面捕捉技术相结合;把波浪模式的各个物理量分解到“粗” “细”两种尺度上,引入消除数值伪振荡的稳定化结构;最后求解“粗” “细”两种尺度耦合的整体变分多尺度方程,模拟了水波自由晃动的1个周期和波浪的传播过程。模拟结果表明:采用变分多尺度方法模拟水波晃动和波浪传播不会引起数值伪振荡,得到精确的数值解,能够正确模拟水波自由晃动的周期性变化现象以及波浪的传播过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号