首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A numerical multi-objective optimization procedure is proposed here to describe the development and application of a practical hydrodynamic optimization tool, OPTShip-SJTU. Three components including hull form modification module, hydrodynamic performance evaluation module and optimization module consist of this tool. The free-form deformation (FFD) method and shifting method are utilized as parametric hull surface modification techniques to generate a series of realistic hull forms subjected to geometric constraints, and the Neumann-Michell (NM) theory is implemented to predict the wave drag. Moreover, NSGA-II, a muti-objective genetic algorithm, is adopted to produce pareto-optimal front, and kriging model is used for predicting the total resistance during the optimization process to reduce the computational cost. Additionally, the analysis of variance (ANOVA) method is introduced to represent the influence of each design variable on the objective functions. In present work, a surface combatant DTMB Model 5415 is used as the initial design, and optimal solutions with obvious drag reductions at specific speeds are obtained. Eventually, three of optimal hulls are analyzed by NM theory and a RANS-based CFD solver naoe-FOAM-SJTU respectively. Numerical results confirm the availability and reliability of this multi-objective optimization tool.  相似文献   

2.
In order to reduce the resistance and improve the hydrodynamic performance of a ship, two hull form design methods are proposed based on the potential flow theory and viscous flow theory. The flow fields are meshed using body-fitted mesh and structured grids. The parameters of the hull modification function are the design variables. A three-dimensional modeling method is used to alter the geometry. The Non-Linear Programming (NLP) method is utilized to optimize a David Taylor Model Basin (DTMB) model 5415 ship under the constraints, including the displacement constraint. The optimization results show an effective reduction of the resistance. The two hull form design methods developed in this study can provide technical support and theoretical basis for designing green ships.  相似文献   

3.
缓波型立管由于设计参数较多且优化目标之间相互影响,设计结果具有很大的不确定性。随着代理模型和智能优化算法的发展,针对缓波型立管的优化可以提出更好的解决方案。以提高力学性能和经济效益为优化目标,采用基于Kriging插值模型和NSGA-II算法的多目标优化策略,对考虑顶部浮体影响的深水缓波型立管进行动力响应分析,并开展线型—截面双目标优化集成设计和线型—浮筒三目标优化集成设计。将处于不同几何尺度的设计变量进行集成,旨在各目标存在相互竞争的情况下,与截面、浮筒设计形成有效互动以提高线型设计的总体性能。结果表明,Pareto最优解集可提供多个选择方案,以满足工程实际需要。将所选最优方案与初始设计进行对比,并以疲劳性能和成本估算作为优化的校核指标,取得了理想的优化效果。  相似文献   

4.
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique(SUMT) interior point method of Nonlinear Programming(NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.  相似文献   

5.
Research on Bulbous Bow Optimization Based on the Improved PSO Algorithm   总被引:1,自引:0,他引:1  
In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.  相似文献   

6.
In traditional naval architecture design methodologies optimization of the hull and propeller are done in two separate phases. This sequential approach can lead to designs that have sub-optimal fuel consumption and, thus, higher operational costs. This work presents a method to optimize the propeller–hull system simultaneously in order to design a vessel to have minimal fuel consumption. The optimization uses a probabilistic mission profile, propeller–hull interaction, and engine information to determine the coupled system with minimum fuel cost over its operational life. The design approach is tested on a KCS SIMMAN container ship using B-series propeller data and is shown to reduce fuel consumption compared to an optimized traditional design approach.  相似文献   

7.
The demand for high-speed craft (mainly catamarans) used as passenger vessel has increased significantly in the recent years. Looking towards the future and trying to respond to the increasing requirement, high-speed crafts international market is passing through deep changes. Different types of high-speed crafts are being used for passenger transport. However, catamarans and monohulls have been the main choice not only for passenger vessel but also as ferryboat.Generally speaking, the efficient hydrodynamic hull shapes, engine improvements, and lighter hull structures using aluminum and composite materials make possible the increase in cruising speed.The high demand for catamarans are due to its proven performance in calm waters, large deck area compared to monohull crafts and higher speed efficiency using less power. Although the advantages aforementioned, the performance of catamaran vessels in wave conditions still needs to be improved.The high-speed crafts (HSC) market is demanding different HSC designs and a wide range of dimensions focusing on lower resistance and power for higher speed. Therefore, the hull resistance optimization is a key element for a high-speed hull success.In addition to that, trade-off high-speed catamaran (HSCat) design has been improved to achieve main characteristics and hull geometry. This paper presents a contribution to HSCat preliminary design phase. The HSCat preliminary design problem is raised and one solution is attained by multiple criteria optimization technique.The mathematical model was developed considering: hull arrangement (area and volume), lightweight material application (aluminum hull), hull resistance evaluation (using a slender body theory), as well as wave interference effect between hulls, calculated with 3D theory application. Goal programming optimization system was applied to solve the HSCat preliminary design.Finally this paper includes an illustrative example showing the mathematical model and the optimization solution. An HSCat passenger inland transport in Amazon area preliminary design was used as case study. The problem is presented, the main constrains analyzed and the optimum solution shown. Trade off graphs was also included to highlight the mathematical model convergence process.  相似文献   

8.
詹可  蒋垣腾  赵敏 《海洋工程》2022,40(6):83-96
常规耐压结构拓扑优化设计研究主要集中于静水压条件下的设计相关载荷拓扑优化理论及方法。但是,在深海环境下,耐压结构可能面临内爆所产生的冲击载荷,其载荷呈现高频率的周期性变化。为研究载荷变化对耐压结构优化设计的影响,在BILE模型的基础上,结合修正的SIMP插值模型,开展不同频率、设计相关动载荷作用下的水下耐压结构拓扑优化理论及方法研究。设计相关动载荷的难点在于不仅载荷的作用位置和方向在优化过程中发生变化,且其大小也随优化过程进行而发生变化,这是与常规设计相关静载荷本质的不同。通过经典的拱形结构优化算例验证BILE模型在动力学拓扑优化中的可行性,进而研究设计相关动载荷作用下的水下耐压结构的最佳拓扑形式。研究表明,在低频时,圆环型耐压结构无明显变化,但多球交接耐压结构在交接处会出现明显材料聚集;高频时,两者均发生明显变化,得到耐压结构新形式。关于设计相关动载荷作用下的水下耐压结构拓扑优化研究,将对新型水下耐压结构的探索具有一定的工程应用价值。  相似文献   

9.
This paper describes the development of a computer-based method for producing chined planing boat hull forms adequate to be applied in concept design. The method is based on a principle where the designer specifies a small set of critical parameters he/she wishes obtain or keep preserved and generates a complete hull form, without the traditional skilled recourse of giving stations point by point. From this set of parameters a detailed and faired drawing with offsets is generated very quickly. The method allows, in its execution mode, the flexibility to modify, adjust and enlarge the input set of parameters. The method was created to allow both (1) automated hull form definitions when integrated to an existing computer system and (2) quick but detailed preliminary calculations of stability, lift and drag, volumes and internal space allocations, sea-keeping estimates, etc., all with very reasonable precision. As application examples some planing boat hull forms are generated. Some are typical and others less usual. The later ones are defined to show the method's limits, in order to validate it.  相似文献   

10.
A computational framework for hydrodynamic shape optimization of complex ship hull form is proposed and applied to improve the calm water performance of the KRISO Container Ship (KCS). The framework relies on three key features: a novel shape morphing method based on a combination of subdivision surfaces and free form deformations, a robust three dimensional viscous computational fluid dynamic solver based on the openFOAM open-source libraries and a Gaussian process-response surface method (GP-RSM) based on ordinary Kriging model which has been created to speed-up the evaluation of the quantity of interest (QoI) of the design process.The accuracy of the hydrodynamic solver is proven by comparing the obtained results against available experimental measurements. A preliminary sensitivity analysis on the mesh size has been carried out aiming at reducing the computational burden required by the CFD predictions. Three GP-RSMs have been trained relying on increasing number of hull designs. Each surrogate model has been cross-validated by both leave-one-out and k-fold techniques. The behaviours of these multi-dimensional surfaces have been analyzed in details by sampling the investigated design space with 107 points according to a Full-Factorial algorithm, highlighting the regions of maximum deviation with respect to the resistance of the reference hull. The three optimum designs provided by the corresponding GP-RSM models have been verified by using high-fidelity CFD simulations with a refined mesh configuration. Calm water resistance, wave patterns and pressure distributions over the selected hull surfaces have been discussed in the light of the generated shape variations.  相似文献   

11.
An inverse hull design approach in minimizing the ship wave   总被引:1,自引:0,他引:1  
The Levenberg–Marquardt Method (LMM) and a panel code for solving the wave-making problem are utilized in an inverse hull design problem for minimizing the wave of ships. A typical catamaran is selected as the example ship for the present study. The hull form of the catamaran is described by the B-spline surface method so that the shape of the hull can be completely specified using only a small number of parameters (i.e. control points). The technique of parameter estimation for the inverse design problem is thus chosen. The LMM of parameter estimation, which is the combination of steepest descent and Newton’s methods, has been proven to be a powerful tool for the inverse shape design problem. For this reason it is adopted in the present study.In the present studies, the inverse hull design method can not only be applied to estimate the hull form based on the known wave data of the target ship but can also be applied to estimate the unknown hull form based on the reduced wave height. The optimal hull forms of minimizing wave for a typical catamaran in deep water at service speed and at the critical speed of shallow water are estimated, respectively. Moreover, a new hull form with the combining feature of the optimal hull forms for deep water and shallow water is performing well under both conditions. The numerical simulation indicates that the hull form designed by inverse hull design method can reduce the ship wave significantly in comparison with the original hull form.  相似文献   

12.
A fuzzy approach to the lectotype optimization of offshore platforms   总被引:1,自引:0,他引:1  
S. Chen  G. Fu   《Ocean Engineering》2003,30(7):877-891
Lectotype optimization of offshore platforms is of particular importance in the concept design process. Lectotype optimization involves multiple objectives with uncertainty and so is a problem of multiple attribute decision making. To date, there have been few published works on this topic in the context of offshore engineering. This paper develops a framework and methodology for evaluation of offshore platform alternatives, where a fuzzy optimum model is proposed to integrate the influence of each objective in the criteria set, and a new weight-assessing method is developed to mimic the decision maker’s experience and preference based on complementary pairwise comparisons. A case study shows that the new framework and methodology is scientific, reasonable and easy to use in practice.  相似文献   

13.
The multiple intersecting spheres (MIS) pressure hull is a logical derivative of the single unstiffened sphere, which is frequently used for deep operating, small submersibles because of its attractive low buoyancy factor. This paper investigates the optimum design of an MIS deep-submerged pressure hull subjected to hydrostatic pressure, using a powerful optimization procedure combined the extended interior penalty function method (EIPF) with the Davidon–Fletcher–Powell (DFP) method. In this study, the thickness of the shell, the width of the rib-ring, the inner radius of the rib-ring and the angle of intersection of the spherical shell are selected as design variables, and structural failure and human requirements are considered to minimize the buoyancy factor. Additionally, a sensitivity analysis is performed to study the influence of the design variables on the optimal structural strength design. The results reveal that the shell thickness is most important to lobar buckling strength, and that rib-ring width, rib-ring inner radius and spherical shell intersection angle are most important to rib-ring hoop strength. Optimization results may provide a valuable reference for designers.  相似文献   

14.
An extremely simple CFD tool is used to compare the calm-water drags of a series of hull forms and to define ‘optimized’ monohull ships for which the total (friction+wave) calm-water drag is minimized. The friction drag is estimated using the classical ITTC formula. The wave drag is predicted using the zeroth-order slender-ship approximation. Comparisons of theoretical predictions and experimental measurements for a series of eight hull forms show that—despite the extreme simplicity of the method that is used here to estimate the friction drag and the wave drag—the method is able to rank the drags of a series of hull forms roughly in accordance with experimental measurements. Thus, the method may be used, with appropriate caution, as a practical hull form design and optimization tool. For purposes of illustration, optimized hull forms that have the same displacement and waterplane transverse moment of inertia as the classical Wigley hull, taken as initial hull in the optimization process, are determined for three speeds and for a speed range.  相似文献   

15.
A fishing boat hull is used as an example of how hull form optimization can be accomplished using a Multi-Objective Genetic Algorithm (MOGA). The particular MOGA developed during this study allows automatic selection of a few Pareto Optimal results for examination by the designers while searching the complete Pareto Front. The optimization uses three performance indices for resistance, seakeeping and stability to modify the hull shape to obtain optimal hull offsets as well as optimal values for the principal parameters of length, beam and draft. The modification of the 148/1-B fishing boat hull, the parent hull form of the ?stanbul Technical University (?TÜ) series of fishing boats, is presented by first fixing the principal parameters and allowing the hull offsets to change, and secondly by simultaneously allowing variation of both the principal parameters and the hull offsets. Improvements in all three objectives were found. For further research the methodology can be modified to allow for the addition of other performance objectives, such as cost or specific mission objectives, as well as the use of enhanced performance prediction solvers. In addition, one or more hulls could be evaluated by experiment to validate the results of using this particular optimization approach.  相似文献   

16.
LI  Wen-long 《中国海洋工程》2003,17(4):541-550
The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliab  相似文献   

17.
Dae-Seung Cho   《Ocean Engineering》2007,34(5-6):902-907
This paper presents a calculation method of derivatives of natural frequencies and mode shapes to parameters affecting vertical hull girder vibration based on design sensitivity analysis. The method premises free vibration analysis of hull girder using the transfer matrix method. Governing sensitivity equation is derived from the direct differentiation of state vector and transfer matrix to design variables. Derivatives of natural frequencies and mode shapes are determined after two trial calculations of the equation. By using the obtained derivatives, the changes of natural frequencies can be rationally and efficiently predicted in case of ship design modification and loading variation.  相似文献   

18.
对深海3 000m液压源储油器,采用兼具压力补偿和体积补偿的胶囊作为其压力补偿器.针对动态运行时可能存在的补偿量不足的问题,提出了储油器系统不失稳时的压力动态补偿设计准则,然后择选一组优化参数设计出储油器系统样机,分别完成在模拟执行元件和环境压力变化时的高压舱下的实验测试,结果表明在两种变工况下储油器内压力均能很好地跟随环境压力的变化,验证了该结构及其设计准则是合理的,为水下液压源储油器系统的压力自平衡设计及可靠运行提供了相应的理论依据和技术支撑.  相似文献   

19.
An optimization approach for fairing of ship hull forms   总被引:2,自引:0,他引:2  
Ebru Sariz 《Ocean Engineering》2006,33(16):2105-2118
This paper presents a numerical fairing procedure to be used at the preliminary design stage to create high-quality ship hull form geometry. The procedure is based on a variational optimization approach in which a fairness measure related to the surface curvature is the objective function to be minimized subject to a set of geometric constraints to ensure that the final form has the required geometric characteristics. The optimization variables are selected as the control points of a B-spline surface representing the initial hull form. A nonlinear direct search technique is employed to solve the problem. The methodology is applied for typical ship forms to indicate that, provided that the designer can specify appropriate design objectives and geometric constraints, the methodology can produce alternative hull forms with significantly improved fairing characteristics. The choice of the fairness objective function is shown to have a crucial effect on the quality of the hull surface. Highly nonlinear exact fairness functionals yield surfaces of high quality at the expense of high-computerized effort.  相似文献   

20.
Increasing propulsion efficiency, safety, comfort and operability are of the great importance, especially for small ships operating on windy sites like the North Sea and the Baltic Sea. Seakeeping performance of ships and offshore structures can be analysed by different methods and the one that is becoming increasingly important is CFD RANS. The recent development of simulation techniques together with rising HPC accessibility enables performance of advanced seakeeping simulations for ships in a full scale. The paper presents CFD seakeeping analysis for a case study vessel in two variants: V-shaped bulbous bow hull form (as built) and innovative hull form (X-bow type). The study presents the influence of redesigning the ship on selected seakeeping aspects. The advanced CFD model, with the application of overset mesh technique, was described in detail. Selected numerical results were validated on the basis of experimental testing in a towing tank and showed good agreement. The approach demonstrated here of performing the CFD seakeeping simulations for the analysis of ship performance in a full scale and close to real loading conditions has direct application to the design process as well as in determination of optimal operational parameters of any ship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号