首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
海洋学   3篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
对深海3 000m液压源储油器,采用兼具压力补偿和体积补偿的胶囊作为其压力补偿器.针对动态运行时可能存在的补偿量不足的问题,提出了储油器系统不失稳时的压力动态补偿设计准则,然后择选一组优化参数设计出储油器系统样机,分别完成在模拟执行元件和环境压力变化时的高压舱下的实验测试,结果表明在两种变工况下储油器内压力均能很好地跟随环境压力的变化,验证了该结构及其设计准则是合理的,为水下液压源储油器系统的压力自平衡设计及可靠运行提供了相应的理论依据和技术支撑.  相似文献   
2.
A hydraulic power unit(HPU) is the driving "heart" of deep-sea working equipment.It is critical to predict its dynamic performances in deep-water before being immerged in the seawater,while the experimental tests by simulating deep-sea environment have many disadvantages,such as expensive cost,long test cycles,and difficult to achieve low-temperature simulation,which is only used as a supplementary means for confirmatory experiment.This paper proposes a novel theoretical approach based on the linear varying parameters(LVP) modeling to foresee the dynamic performances of the driving unit.Firstly,based on the varying environment features,dynamic expressions of the compressibility and viscosity of hydraulic oil are derived to reveal the fluid performances changing.Secondly,models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer,and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration.Thirdly,dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters.Finally,the developed HPU is tested in a deep-sea imitating hull,and the experimental results are well consistent with the theoretical analysis outcomes,which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU.The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.  相似文献   
3.
视群桩为弹性组合杆件,将弹性半空间理论的V.A.Baranov薄片分解为组合薄片,并利用Bara-nov函数的精确解和M.Novak对单桩的近似解,提出了群桩的回转及水平动力刚度和阻尼系数的计算公式。该公式直接计算群桩的回转及水平动力参数,体现了群桩的动力本征特性,无需工程经验修正或群桩效率修正。理论计算结果与几个工程现场实测值对比,两者吻合较好,能满足工程精度。  相似文献   
4.
A hydraulic power unit (HPU) is the driving “heart” of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydraulic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号