首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海底滑坡作为常见的海洋地质灾害,对海洋油气工程安全产生巨大威胁。海床土体失稳引起滑坡体滑动,会对海底管道产生拖曳作用。基于计算流体动力学方法(CFD)建立海底滑坡体对管道作用的评估模型,采用H-B模型描述块状滑坡体并与试验比较验证,分析不同海床倾斜度滑坡对管道的作用并拟合表达式;研究了海底管道在滑坡作用下的力学响应,并采用极限状态方法开展海底滑坡作用下管道结构极限安全分析,探讨了管道埋地状态时的极限安全界限,建立滑坡作用下管道结构安全分析方法。研究表明:滑坡对管道作用力与海床倾角呈现正相关,而覆土层厚度对作用力影响较小;随着不排水抗剪强度的减小,允许的滑坡宽度和速度均增加,表明土体不排水抗剪强度与引起的拖曳力呈正相关;滑坡土体宽度对极限安全速度影响较大。  相似文献   

2.
Recently, the security and stability of submarine pipelines have attracted much attention in ocean engineering. In this paper, pipelines with a streamlined contour (wedge, airfoil, double-ellipse, and arc-angle hexagon) are designed in hopes of defending against the impact of submarine landslides, and the computational fluid dynamics (CFD) approach is used to investigate the interaction between submarine landslides and streamlined pipelines. The results show that the peak interactional force is more representative of the hazard level of pipelines imposed by submarine landslides. It is also found that the streamlined pipelines possess a significant advantage in reducing the drag force and lift force of landslide–pipeline interaction with a maximum lessening percentage of 66.32 and 40.17%, compared with a conventional circular pipeline. In addition, the influence of applying streamlined pipelines to engineering is briefly discussed, and the empirical equation for estimating the drag force and lift force of streamlined pipelines induced by landslides is recommended based on the numerical test results.  相似文献   

3.
Estimating the impact forces exerted by a submarine debris flow on a pipeline is a challenge, and there is room for considerably more work to advance the state of the art. To this end, an experimental program was performed to investigate the impact on two pipeline installation scenarios: 1) suspended pipeline and 2) laid-on-seafloor pipeline. The results and observations from the experimental investigation are discussed. The definition of Reynolds number was modified for non-Newtonian fluids and an ad hoc method was developed to estimate the drag force exerted by an impact perpendicular to the pipe axis. The method may be used in prototype situations to estimate the drag force from submarine debris flow impact on pipelines. The experimental program was complemented by Computational Fluid Dynamics (CFD) analyses, the details of which are discussed in the accompanying paper.  相似文献   

4.
海底滑坡对置于海床表面管线作用力的CFD模拟   总被引:2,自引:0,他引:2  
王忠涛  王寒阳  张宇 《海洋学报》2016,38(9):110-117
海底管线是海洋工程中用于传输原油和天然气等的重要通道,通常放置在海床表面或处于悬跨状态。本文采用计算流体动力学CFD法模拟了不同冲击角度下海底滑坡对置于海床表面的海底管线的作用,得到了管线所受的轴向荷载和法向荷载与滑坡冲击角度之间的关系。同时分析了沿冲击方向管线截面形状与管线所受阻力之间的关系。对已有研究进行拓展延伸,丰富了不同工况下轴向阻力系数和法向阻力系数的计算成果,得出了海底滑坡对置于海床表面管线冲击力的计算公式。  相似文献   

5.
Computational fluid dynamics (CFD) analysis was employed to numerically simulate impact of clay-rich submarine debris flows on a suspended (free-span) pipeline at various angles of attack. The resultant horizontal drag force can be decomposed into two components: normal and parallel to the pipe axis. A method is presented for estimating the normal and longitudinal drag forces on a suspended pipeline and is applicable to a wide of impact situations. The work presented here complements the results of an earlier investigation into the drag forces on suspended and laid-on-seafloor pipelines. The previous investigation consisted of both physical laboratory experiments and CFD numerical analyses, for an impact situation normal to the pipe axis. The impact Reynolds numbers presented in this paper range between about 2 and 320. This range is considered appropriate for practical design purposes.  相似文献   

6.
With the development of marine energy in full swing, an increasing number of pipelines are being installed in deep-sea areas, which inevitably pass through extremely complex topographic conditions, to form natural sections of suspension over submarine canyons. The seabed is easily eroded and shaped by active deep-sea bottom currents and watercourses, resulting in different span heights for pipelines originally laid on the seabed. In particularly, deep-sea geological hazards frequently occur, and submarine landslides seriously threaten the safe operation of the pipelines. To address these problems, an improved numerical analysis method combined with low-temperature rheological models of landslides and the optimization design method of the geometric model, is developed to simulate the landslides’ impacts on pipelines. Based on these, the effect of the span heights on the pipelines’ impact forces induced by deep-sea landslides is systematically investigated, and three modes of the forces on pipelines under the impact of landslides and related mechanism are proposed. Further, the span height ratio is put forward, and four formulas for evaluating the forces on pipeline are established. Through the analysis of calculation results, the lift force coefficient even increases nearly 20 times considering different span heights. This research provides a theoretical basis for the design and protection of deep-sea pipelines.  相似文献   

7.
Because of the complex geological conditions of the seabed, submarine pipelines buried beneath the ocean floor become suspended over the seabed under the long-term scour of waves eroding the surrounding sediment. Further, most oil fields were built in offshore areas while the country was developing. This gives the waves seen in shallow water obvious nonlinear features, and the abnormal characteristics of these waves must be considered when calculating their hydrodynamic forces. Particularly under such conditions, these suspended spans of submarine pipelines are prone to damage caused by the action of the external environment load. Such damages and eventual failures may result not only in great property losses but also pollution of the marine environment. The span length of these areas is a key predictive factor in pipeline damages. Therefore, determining the allowable span length for these submarine pipelines will allow future projects to avoid or prevent damage from excessive suspended span lengths. Expressions of the hydrodynamic loads placed on suspended spans of pipeline were developed in this work based on the first-order approximate cnoidal wave theory and Morison equation. The formula for the allowable free span length was derived for the common forms of free spanning submarine pipeline based on the point where maximum bending stresses remain less than the material’s allowable stress. Finally, the allowable free span length of real-world pipelines was calculated for a subsea pipeline project in Bohai Bay. This research shows that, with consideration for the complicated marine environment, existing suspended spans are within allowable length limitations. However, continuing to limit the length of these submarine pipeline spans in the Nanpu oil field will require ongoing attention.  相似文献   

8.
Offshore pipelines are critical infrastructures and any possible damage may have devastating financial and environmental consequences. Earthquake-related geohazards (such as strong ground motion, active seismic faults, submarine landslides and debris flows) consist crucial threats that an offshore pipeline has to overcome. The main aim of the current study is to examine analytically a seabed-laid offshore pipeline subjected to a lateral kinematic distress due to a submarine landslide or a debris flow. Extra emphasis is given on the impact of pipe-soil interaction on the pipe response, by the realistic representation of the soil resistance via a tri-linear model. Firstly, the proposed analytical model is validated with a numerical model utilizing the finite-element method. Subsequently, various combinations of soil parameters and loading conditions that affect the examined problem are investigated with realistic input data taken from the offshore section of the high-pressure natural-gas pipeline TAP (Trans Adriatic Pipeline) in the Adriatic Sea. Finally, useful conclusions are drawn regarding the applicability and the efficiency of the proposed approach.  相似文献   

9.
Owing to the complex environmental conditions, suspension could induce complicated forces on submarine pipelines and even cause vortex-induced vibration, resulting in fatigue damage of pipelines. Through aiming at the 28-inch submarine pipeline in the East China Sea, the pipeline was segmented according to the similarity, considering the factors of pipe assembly, typhoon, current, wave and seabed topography. The effects of span length on natural frequency in each section of submarine pipeline were analyzed by finite element model. The maximum safe span length allowed by each pipeline section was verified by fatigue cumulative damage theory, and the fatigue life of each pipeline section were predicted. The results showed that each order natural frequency of the pipeline decreased with the increase of span length. The calculated results of empirical formulas were much smaller than those of the FEM analysis. The increase of the gap between the suspended pipeline and the seabed was beneficial to enhance the fatigue life of the suspended pipeline.  相似文献   

10.
Geo-hazard assessment of the potential damage to a pipeline caused by a submarine landslide requires a quantitative model to evaluate the impact forces on the pipeline. In contrast with typical geotechnical problems, the strain rate within the fast moving, flow-like submarine landslide is typically far higher, which will lead to enhancement of the soil strength and therefore result in larger impact forces. Generally, there are two possible predictive frameworks for strain-rate dependence: a fluid dynamics framework and a geotechnical framework. By comparison of common rheological models adopted in these two different approaches, a unified additive power-law model, a normalised form of the Herschel-Bulkley model from fluid mechanics, is explored in this paper. This model has been used in conjunction with a large deformation finite element approach to investigate the undrained limiting loads on a cylinder moving steadily through inertia-less soft rate-dependent material, in order to quantify the strain-rate effects.The flow mechanism and the effects of the shear-thinning index and Oldroyd number on the shear zones are explored. The calculated resistance factors are compared with the drag coefficients obtained from computational fluid dynamics analysis. The average rate of strain experienced by the soil flowing past the cylinder is estimated for a given flow velocity and an expression in the form of a conventional bearing capacity equation, but with shear strength linked directly to the normalised flow velocity, is proposed to predict the magnitude of the viscous force exerted by the debris flow.  相似文献   

11.
Stability design of submarine pipelines is a very important procedure in submarine pipeline engineering design. The calculation of hydrodynamic forces caused by waves and currents acting on marine pipelines is an essential step in pipeline design for stability. The hydrodynamic forces-induced instabilities of submarine pipelines should be regarded as a wave/ current-pipeline-seabed interaction problem. This paper presents a review on hydrodynamic forces and stability research of submarine pipelines under waves and currents. The representative progress including the improved design method and guideline has been made for the marine pipelines engineering design through experimental investigations, numerical simulations and analytical models. Finally, further studies on this issue are suggested.  相似文献   

12.
Computational Fluid Dynamics (CFD) numerical analysis was employed to analyze the situations tested experimentally, as described in Part I. The methodology and results of the CFD analyses are discussed and compared with the observations made from the experiments. The numerical model performed satisfactorily with regard to obtaining the impact forces exerted on the model pipe as well as simulating the hydroplaning phenomenon and estimating slurry flow heights. The experimental results were combined with the results of the CFD analyses to develop a practical method to compute the drag force caused by a submarine debris flow impact on a pipeline. The CFD analyses provided some insight to the separated region characterization, but the attempt to analyze the vortex shedding phenomenon as observed in the experiments was unsuccessful. Additional studies are required for better understanding of both the separated region characteristics and vortex shedding.  相似文献   

13.
复杂荷载作用下海底腐蚀管线破坏机理研究进展   总被引:1,自引:0,他引:1  
周晶  陈严飞  李昕  冯新  范颖芳 《海洋工程》2008,26(1):127-136
腐蚀是引起海底管线破坏的一种重要原因。综述在内部工作压力和外部环境荷载作用下海底腐蚀管线破坏机理的研究,论述海底腐蚀管线在单一荷载和多种荷载联合作用下的破坏状态,并说明了当前研究的热点问题。最后,对该领域进一步的研究工作进行了展望。  相似文献   

14.
- With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow.  相似文献   

15.
考虑流固耦合时的海底管道悬跨段非线性动力分析   总被引:6,自引:0,他引:6  
通过对管道的涡激振动试验,提出了考虑流固耦合的非线性涡激升力表达式,并用该式进行了海底管线悬跨段非线性动力响应时程分析。对考虑流固耦合与未考虑流固耦合情况下得到的管道动力响应时程进行对比,算例表明:当管外流场流速与管道顺流向振动速度值较接近时,不考虑流固耦合时的计算结果明显小于考虑流固耦合时的计算结果。分析认为,在管外流场流速与管道顺流向振动速度值较接近的情况下,管道的涡激振动计算宜采用非线性涡激力模型。  相似文献   

16.
为了研究海底滑坡对海洋单桩的冲击力大小,首先通过调整高岭土、粉砂的不同含量,得到不同流变特性、不同密度的碎屑流,采用Herschel-Bulkley模型和幂率模型对流体流变性质进行描述;随后利用自制海底滑坡模型槽,模拟碎屑流在不同流速和黏度下对模型桩的冲击;并结合流体力学理论,建立阻力系数与非牛顿流体雷诺数之间关系表达式。试验数据表明:碎屑流黏度和流速是影响海底滑坡冲击力的主要因素,海底滑坡冲击力随着泥浆黏度和流速的增加而增大。同时,考虑碎屑流剪切稀释特性,得到管桩阻力系数随雷诺数变化的拟合公式,为海洋桩基础设计提供参考。  相似文献   

17.
When a subsea pipeline is laid on an uneven seabed, certain sections may have an initial elevation with respect to the far-field seabed, eo, and thus potentially affecting the on-bottom stability of the pipeline. This paper focuses on quantifying the effects of the upstream dimensionless seabed shear stress, θ, and Reynolds number, Re, on: (1) the maximum dimensionless seabed shear stress beneath the pipe, θmax, to be compared to the critical shear stress in order to determine whether scour would occur and progress towards an equilibrium state; and, (2) the dimensionless equilibrium scour depth beneath the pipe, Seq/D. Using a 2-D Reynolds averaged Navier-Stokes (RANS) approach along with the k-ω Shear Stress Transport (SST) turbulence model, a parametric study involving 243 computational fluid dynamics (CFD) simulations was conducted. The simulation results were used to develop a closed-form equation for the prediction of θmax. Subsequently, experimental measurements of Seq/D have been compiled from published literature, to develop a new closed-form equation for the prediction of Seq/D with a high correlation to the experimental data. In summary, we present two closed-form equations for the prediction of θmax and Seq/D for pipelines with an initial eo/D, which are applicable for both clear-water and live-bed conditions. The effects of θ and Re have been included, albeit Re having a small influence as compared to the other parameters.  相似文献   

18.
In this study an Euler-Euler two-phase model was developed to investigate the tunnel erosion beneath a submarine pipeline exposed to unidirectional flow. Both of the fluid and sediment phases were described via the Navier-Stokes equations, i.e. the model was implemented using time-averaged continuity and momentum equations for the fluid and sediment phases and a modified kε turbulence closure for the fluid phase. The fluid and sediment phases were coupled by considering the drag and lift interaction forces. The model was employed to simulate the tunnel erosion around the pipeline laid on an erodible bed. Comparison between the numerical result and experimental measurement confirms that the numerical model successfully predicts the bed profile and velocity field during the tunnel erosion. It is evident that the sediments are transported as the sheet-flow mode in the tunnel erosion stage. Also the transport rate under the pipe increases rapidly at the early stage and then reduces gradually at the end of the tunnel erosion beneath pipelines.  相似文献   

19.
- A composite pipeline is defined as a main big pipe composed of one or several small pipes. The flow behaviour around a submarine composite pipeline is more complicated than that around a single submarine pipeline. A series model test of composite pipelines in a wave-current coexisting field was conducted by the authors. Both in-line and lift forces were measured, and the resultant forces were also analyzed. The results of lift forces and resultant forces are reported in this paper. It is found that the lift force coefficients for composite pipelines are well related to the KC number. The lift force coefficients for an irregular wave-current coexisting field are smaller than those for a regular wave-current coexisting field. The frequency of lift force is usually twice the wave frequency or higher. The authors test indicates that the resultant forces are about 10 to 20 percent larger than in-line forces (horizontal forces). The effect of water depth is analyzed. Finally, the relationship between lift f  相似文献   

20.
北吕宋海槽深海滑坡沉积及其分布特征   总被引:1,自引:1,他引:0  
通过浅地层剖面和多波束地形资料的精细解释,在北吕宋海槽中部发现了一个规模约500 km2,平均厚20多米的海底滑坡沉积。通过对该滑坡体的物源及其沉积环境分析,将整个滑坡体沉积分为末端区和前缘区两个部分。从滑坡体与周围地层的叠置关系及火山弧喷发的历史来看,初步认为该海底滑坡是地震造成的。该滑坡体的发现对深化深水滑坡体的认识具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号