首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 170 毫秒
1.
等效声速剖面法将实际复杂的声速剖面用一个简单的声速剖面等效替代,在声线跟踪时可以提高计算效率。但在多波束测深系统归位计算中,由于地形的起伏,对每ping各个波束使用单一的等效声速剖面会影响计算精度。通过仿真实验分析了地形起伏对等效声速剖面法计算精度的影响,提出了一种等效声速迭代算法,通过实验发现,相比于常梯度声线跟踪算法,迭代算法可达到同等精度水平,并有更高的计算效率。  相似文献   

2.
超短基线定位解算中的距离观测值是指换能器与水下应答器之间的直线距离,而海水声速的不均匀分布导致声波在海水中的实际传播路径为连续弯曲的曲线,需要结合实测声速剖面进行声线修正。根据声速在分层介质中的传播特性,本文提出了一种基于二次多项式拟合的声线跟踪算法,采用线性插值方法对声速剖面数据进行合理加密并按等深度进行分层,设定每层声速梯度是不断变化的,用二次多项式拟合声速,基于运动学原理建立了完整的数学解算模型。仿真结果表明,该方法修正后的水下目标分布具有明显的收敛性,且优于等梯度声线跟踪算法和等效声速剖面法,显著提高了超短基线水声定位系统的定位精度。  相似文献   

3.
讨论了声速误差对多波束测深值的影响,在此基础上,建立了自动搜索等效声速剖面的改正方法。该方法利用多波束实测数据搜索等效声速剖面,取代实测声速剖面,可削弱声速误差的影响。实例计算表明,利用多波束实测数据建立的声速剖面自动改正方法,能够有效地消除声速误差的影响,并且在处理过程中不需要人工干预,较大地提高了改正效率。  相似文献   

4.
提出了一种在声速剖面未知的条件下计算海底控制点水平坐标的方法,根据流体静力学方程将海底应答器的压力值转化为深度值,并以此深度值作为等效声速剖面法的参考深度,基于等效声速剖面法与船底换能器到海底应答器声波的传播时间计算各历元的测距值,通过圆走航利用距离交会法确定海底控制点水平方向的坐标。松花湖的实验表明,这种方法可以获得较高精度的浅海海底控制点水平方向的坐标。  相似文献   

5.
介绍了水下声学定位原理以及目前常用的几种声速改正方法,提出了一种泰勒级数展开法和声线修正法组合的声速改正方法。通过模拟算例,将加权平均声速法、泰勒级数展开法、等效声速剖面法、声线修正法和组合方法进行了比较,展示声线修正法和组合方法的效果。  相似文献   

6.
水声定位系统中, 声线弯曲是造成定位误差大的主要原因, 本文针对该问题提出了一种迭代适应点分层(IAPL)的声线修正算法, 将声速剖面筛选分层修正声线。首先搭建水声定位模型, 通过拟合目标海域的监测数据, 得到声速高次函数; 其次探究声线弯曲时目标位置与掠射角的关联性, 由此构造出声线插值函数并求解路径参数; 最后提出划分原则, 精简声速剖面分层。仿真结果表明, 所提算法定位误差较低, 分层精简率均维持在48.04%的水平, 使计算量平均下降可达50.27%, 能够最大程度保留声速剖面的原始特征, 减少分层数量, 提高计算效率。  相似文献   

7.
二类水体表观光学特性的测量与分析--剖面法方法研究   总被引:2,自引:0,他引:2  
光学剖面法是测量水体表观光学参数的首选方法.文章在简要介绍剖面测量基本原理的基础上,分析了剖面法的误差来源,提出了减少误差的措施.同时,针对我国近岸水体的特点,重点介绍了三种改进的剖面法数据处理方法,应用效果良好.  相似文献   

8.
以测得的误差声速剖面作为初始猜测值,利用多波束记录到的波束传播时间和波束角等信息,通过广义线性反演得到一个与实际声速剖面比较接近的声速剖面,这有助于减少声速剖面的误差。通过理论模型计算,验证了该方法的可行性和正确性。  相似文献   

9.
深海空间站在母船伴随保障时面对恶劣天气存在安全风险及水下多平台作业低效的问题,传统的单一的保障船模式仅依靠超短基线等水下定位方法,水下平台定位速度慢、误差大、相互感知协作困难, 已无法满足要求。提出了一种基于通信信标的深海水声定位方法,采用宽带扩频通信进行时延估计,然后利用已建立的等效声速表查找等效声速,完成声线修正,从而提高了深海水声定位精度。并在实验室进行了深海水文条件下估计目标运动轨迹仿真,仿真结果表明该方法能够有效的提高水声定位精度。  相似文献   

10.
自主水下机器人(AUV)对接技术是目前水下机器人的研究热点,精确可靠的AUV的回坞导航是实现对接的关键技术。对于追求轻便的便携式AUV的对接系统,考虑到便携式AUV的搭载能力有限又需要足够的定位精度用于对接,提出了一种基于超短基线(USBL)定位的回坞导航方法,该方法让AUV只需装载电子罗盘和水声应答器就能完成精确的回坞定位。根据导航方法的特点,设计了一种改进的扩展卡尔曼滤波算法,其优点是能在处理滞后的USBL数据的同时动态估算海流、更新状态方程以消除海流造成的定位误差。通过湖试和大量仿真实验,验证了定位算法在海流影响下的定位性能。  相似文献   

11.
The aim of this study is to solve the problem of poor tracking in autonomous underwater vehicle (AUVs) that are operating based on traditional line-of-sight (LOS) method when tracking different paths in a complex marine environment. An adaptive-LOS (ALOS) guidance law with drift angle compensation is proposed, and is employed to calculate the AUV’s desired course (direction of velocity) and heading. First, an appropriate look-ahead distance is derived by the ALOS guidance law in consideration of the predefined path curvature, real-time tracking error and speed of the AUV. Subsequently, proper compensation is provided with respect to the actual drift angle. Compared with traditional LOS operation, this method flexibly adjusts to a suitable look-ahead distance while considering many related factors, providing a better path following performance. Both simulation and experimental results are presented to validate the effectiveness of this method.  相似文献   

12.
声速误差是多波束水深地形测量主要误差源之一,通常采用现场声速剖面测量的方式加以改正,但在深远海多波束水深地形测量时,现场获取全深度的声速剖面并非易事。针对这一问题,利用东南印度洋海洋调查工作中采集到的17个站位的CTD数据,将所有站位声速剖面拓展到全深度,采用经验正交函数分析法(Empirical Orthogonal Functions,EOF)构建调查区声速剖面场,可获得声速剖面场内任意一点的声速值。然后通过EOF重构声速剖面场获得的声速值对测区内多波束水深地形数据进行改正,并与实测声速剖面对多波束水深地形数据的改正结果进行对比,结果表明,5000 m水深范围内2种声速改正结果相差很小,EOF重构法对深水多波束的声速改正满足水深测量的要求。  相似文献   

13.
水下声学定位观测数据中不可避免地存在粗差,随机模型解算广泛地采用等权模型,模型实现简单,但与实际不符,且不能抑制粗差影响。针对该问题,提出一种基于IGG3方案的抗差Helmert方差分量估计方法。该方法通过水深和观测距离将观测值分为两类,利用Helmert方差分量估计确定不同类观测值的权比,抗差解决了粗差导致Helmert方差分量估计模型失效的问题。实验结果表明,相比于传统解算方法,抗差Helmert方差分量估计方法可以合理确定各观测值权比,削弱粗差影响,提高水下定位精度和可靠性。  相似文献   

14.
水下声学定位、惯性导航定位、多普勒声纳以及组合导航定位是目前我国大洋科考调查工作中的几种主要水下导航定位技术。通过分析常规调查装备、ROV、AUV和载人潜水器等4类主要水下科考设备的导航定位系统实测数据,给出不同水下导航定位模式的现场作业精度,为我国大洋科考调查工作中水下导航定位技术的选择与应用等工作提供参考。  相似文献   

15.
简要介绍了声线跟踪计算中比较精确的常梯度声线跟踪算法,针对实际声速剖面测量中可能出现的随机误差和整体偏差两种情况,分别设计了相对应的模拟声速剖面,然后采用常梯度声线跟踪算法计算波束脚印,分析声速剖面误差对波束脚印计算的影响,给出了实际多波束测量作业中声速剖面测定密度和间隔的建议。  相似文献   

16.
在简要介绍AUV声学定位声纳接收机原理基础上,分析了CW脉冲信号在极性相关检测电路中的传输过程,建立了极性相关积分检测延时仿真分析模型。提出采用蒙特卡洛模拟方法获取检测延时的分布特征和统计参数的观点。实验结果表明蒙特卡洛模拟实验与硬件电路实验结果一致,对于解决随机性检测延时问题具有很强的能力。获得的结果可为AUV定位声纳检测门限的设定、声学测距和定位精度分析以及水声通信延时分析提供参考。  相似文献   

17.
The maximum error in ocean depth measurement as specified by the International Hydrographic Organization is 1% for depth greater than 30m. Current acoustic multibeam bathymetric systems used for depth measurement are subject to errors from various sources which may significantly exceed this limit. The lack of sound speed profiles may be one significant source of error. Because of the limited ability of sound speed profile measurement, depth values are usually estimated using an assumed profile. If actual sound speed profiles are known, depth estimate errors can be corrected using ray-tracing methods. For depth measurements, the calculation of the location at which a sound pulse impinges on the sea bottom varies with the variation of the sound speed profile. We demonstrate that this location is almost unchanged for a family of sound speed profiles with the same surface value and the same area under them. Based on this observation, we can construct a simple constant-gradient equivalent sound speed profile to correct errors. Compared with ray-tracing methods, the equivalent sound speed profile method is more efficient. If a vertical depth is known (or independently measured), then depth correction for a multibeam system can be accomplished without knowledge of the actual sound speed profile. This leads to a new type of precise acoustic multibeam bathymetric system.  相似文献   

18.
Precise Multibeam Acoustic Bathymetry   总被引:7,自引:0,他引:7  
The maximum error in ocean depth measurement as specified by the International Hydrographic Organization is 1% for depth greater than 30m. Current acoustic multibeam bathymetric systems used for depth measurement are subject to errors from various sources which may significantly exceed this limit. The lack of sound speed profiles may be one significant source of error. Because of the limited ability of sound speed profile measurement, depth values are usually estimated using an assumed profile. If actual sound speed profiles are known, depth estimate errors can be corrected using ray-tracing methods. For depth measurements, the calculation of the location at which a sound pulse impinges on the sea bottom varies with the variation of the sound speed profile. We demonstrate that this location is almost unchanged for a family of sound speed profiles with the same surface value and the same area under them. Based on this observation, we can construct a simple constant-gradient equivalent sound speed profile to correct errors. Compared with ray-tracing methods, the equivalent sound speed profile method is more efficient. If a vertical depth is known (or independently measured), then depth correction for a multibeam system can be accomplished without knowledge of the actual sound speed profile. This leads to a new type of precise acoustic multibeam bathymetric system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号