首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 182 毫秒
1.
侧扫声纳和多波束测深系统在海洋调查中的综合应用   总被引:12,自引:2,他引:12  
罗深荣 《海洋测绘》2003,23(1):22-24
介绍了利用多波束进行全覆盖水深测量和利用侧扫声纳进行海底、水体目标的探测技术。综合利用多波束水深数据和侧扫声纳声图,可有效增强不同观测数据的互补性和提高工程质量。  相似文献   

2.
为了改善多波束声纳的分辨率,提出了一种基于相干原理的测深新算法,对每一个波束脚印内的信号进行相干处理,获得了大量的海底深度值。在此基础上,采用新算法对仿真数据和某型号多波束测深声纳湖上实验数据进行处理。结果表明,相对于传统多波束测深算法,该算法可显著提高声纳海底测量的分辨率,获得大量的海底深度测量值。  相似文献   

3.
多波束与侧扫声纳海底目标探测的比较分析   总被引:2,自引:0,他引:2  
侧扫声纳是目前常用的海底目标(如沉船、水雷、管线等)探测工具,在测深领域,多波束以全覆盖和高效率证明了它的优越性。由于多波束具有很高的分辨率,目前在工程上已经开始应用多波束进行海底目标物的探测。对多波束和侧扫声纳进行了比较分析,并着重探讨了影响多波束分辨率的各种因素。结果表明:多波束的最大优点在于定位精度高,但其适用范围不如侧扫声纳广泛,尤其受到水深和波束角的限制,多波束和侧扫声纳在探测海底目标时具有很好的互补性,同时应用可以提高目标解译的准确性。  相似文献   

4.
高质量的海底声强图是进行多波束海底底质分类、目标识别的基础。要得到"单纯"反映海底底质信息的声强图,就需要对原始声强数据进行地形改正,消除地形因素的影响。在描述了多波束数据中水深数据不能满足声强数据的改正要求问题的基础上,提出了以水深数据覆盖范围为约束的声强数据选取方法。实例计算结果表明:该方法在能有效地选取高质量的声强数据,提高了基于声强图像的海底底质分类精度。  相似文献   

5.
Simrad EM多波束声纳系统回波强度数据的分析与应用   总被引:1,自引:0,他引:1  
首先分析了Simrad EM多渡束声纳系统回渡强度数据获取时系统进行的增益处理,分别探讨了深度数据包和海底图像数据包中回波强度数据的表征内容及意义,研究了不同数据包中回波强度数据的记录方式、特点及应用范围,为多波束水下目标识别和海底底质分类研究提供准确、表述清晰的基础数据.  相似文献   

6.
EM1002S与GeoSwath多波束声纳系统测深精度比较分析   总被引:1,自引:0,他引:1  
多波束勘测之前,为了保证多波束成果质量,需要对多波束声纳系统进行一系列设备安装校准和精度评估工作.基于在渤海湾开展的多波束海底地形地貌勘测项目,在项目勘测之前,对EM1002S与GeoSwath多波束声纳系统进行了安装校准,并对2套多波束声纳系统的测深精度进行了比较分析,通过计算得到两套系统之间的最大测深误差为-0.38 m,测深误差主要为0~0.2 m,无超限数据,结果分析显示2套多波束声纳系统的测深精度满足勘测技术要求,为我们调查工作的顺利开展奠定了良好的基础.  相似文献   

7.
多波束回波强度信息与海底底质类型具有较强的相关性,通过海底声纳图像能够实现底质类型的划分.为提高海底底质分类质量,依托SonarWiz的智能底质分类优势,在海底声纳图像纹理特征自动分类基础上,引入地形属性信息修正分类结果.以三亚崖州湾附近海域为例,基于实测海底地形数据和海底表面声纳图像,利用数据处理技术和图像分类方法,...  相似文献   

8.
船载低频多波束测深声纳、侧扫声纳可以对深海海底地形地貌进行快速、高效、大面积探测,但其测量精度有限,难以满足深海科学考察、资源勘探开发对高精度海底地形地貌的需求。随着各类大深度水下移动载体(如深海拖体、水下机器人、遥控潜器和载人潜水器)的涌现,特别是各类耐高压测绘声纳的商业化,使大深度近海底精细地形地貌探测成为可能。首先分析了多波束测深声纳、侧扫声纳和测深侧扫声纳等3种测绘声纳的基本原理,然后分别介绍了各类测绘声纳的国内外典型商业化产品,并通过典型实例分析了其在大深度近海底精细测绘中的应用情况。  相似文献   

9.
侧扫声纳系统在海底障碍物扫测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对海道测量中侧扫声纳位置精度低的问题,利用GPS定位数据、单波束水深数据和侧扫数据,研究侧扫声纳扫海测量中海底障碍物信息精化问题。海上试验数据表明:文中提出的多源水声测量信息联合扫测海底障碍物的方法,可改善单一侧扫系统目标探测的精度,对海底目标物扫测具有较好的适用性。  相似文献   

10.
利用MVDR算法削弱多波束测深声纳的隧道效应   总被引:1,自引:0,他引:1  
分析了海底多波束测深声纳中存在的隧道效应及其产生机理,指出旁瓣干扰是引起隧道效应的重要因素,隧道效应的出现导致多波束测深声纳把相对平坦的海底误测成凹面向上的水平半圆柱面海底地形。研究了基于GSC结构的自适应波束形成算法,推导提出了MVDR算法的连续自适应实现方案,并利用该算法对多波束测深声纳湖试数据中存在的隧道效应进行处理,结果表明该算法能够有效削弱多波束测深数据边缘波束中存在的旁瓣干扰。  相似文献   

11.
多波束反向散射强度数据处理研究   总被引:8,自引:5,他引:8  
在探讨多波束测深系统反向散射强度与海底底质类型的关系基础上,研究影响反向散射强度的各种因素,主要分析了海底地形起伏、中央波束区反射信号对反向散射强度的影响,并给出了消除这些影响的方法;将处理后的“纯”反向散射强度数据镶嵌生成海底声像图,为海底底质类型划分以及地貌解译提供了基础数据和辅助判读依据.  相似文献   

12.
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

13.
Processing Multibeam Backscatter Data   总被引:1,自引:0,他引:1  
A new highly precise source of data has recently become available using multibeam sonar systems in hydrography. Multibeam sonar systems can provide hydrographic quality depth data as well as high-resolution seafloor sonar images. We utilize the seafloor backscatter strength data of each beam from multibeam sonar and the automatic classification technology so that we can get the seafloor type identification maps. In this article, analyzing all kinds of error effects in backscatter strength, data are based on the relationship between backscatter strength and seafloor types. We emphasize particularly analyzing the influences of local bottom slope and near nadir reflection in backscatter strength data. We also give the correction algorithms and results of these two influent factors. After processing the raw backscatter strength data and correcting error effects, we can get processed backscatter strength data which reflect the features of seafloor types only. Applying the processed backscatter strength data and mosaicked seafloor sonar images, we engage in seafloor classification and geomorphy interpretation in future research.  相似文献   

14.
Over the past few years there have been remarkable and concomitant advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the mapping, imaging and exploration of the seafloor. Future developments must involve all aspects of the “seafloor mapping system,” including, sonars, ancillary sensors (motion sensors, positioning systems, and sound speed sensors), platforms upon which they are mounted, and the products that are produced. Current trends in sonar development involve the use of innovative new transducer materials and the application of sophisticated processing techniques including focusing algorithms that dynamically compensate for the curvature of the wavefront in the nearfield and thus allow narrower beam widths (higher lateral resolution) at close ranges . Future developments will involve “hybrid”, phase-comparison/beam-forming sonars, the development of broad-band “chirp” multibeam sonars, and perhaps synthetic aperture multibeam sonars. The inability to monitor the fine-scale spatial and temporal variability of the sound speed structure of the water column is often a limiting factor in the production of accurate maps of the seafloor; improvements in this area will involve continuous monitoring devices as well as improved ocean models and perhaps tomography. Remotely Operated Vehicles (ROV’s) and particularly Autonomous Underwater Vehicles (AUV’s) will become more important as platforms for seafloor mapping systems. There will also be great changes in the products produced from seafloor mapping and the processing necessary to create them. New processing algorithms are being developed that take advantage of the density of multibeam sonar data and use statistically robust techniques to “clean” massive data sets very rapidly. A range of approaches are being explored to use multibeam sonar bathymetry and imagery to extract quantitative information about seafloor properties, including those relevant to fisheries habitat. The density of these data also enable the use of interactive 3-D visualization and exploration tools specifically designed to facilitate the interpretation and analysis of very large, complex, multi-component spatial data sets. If properly georeferenced and treated, these complex data sets can be presented in a natural and intuitive manner that allows the simple integration and fusion of multiple components without compromise to the quantitative aspects of the data and opens up new worlds of interactive exploration to a multitude of users.  相似文献   

15.
Deep towed side-scan sonar vehicles such as TOBI acquire high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. Fusion of the side-scan sonar data with bathymetry data from an independent source is often desirable to reduce ambiguity in geological interpretations, to aid in slant-range correction and to enhance seafloor representation. The main obstacle to fusion is accurate registration of the two datasets.The application of hierarchical chamfer matching to the registration of TOBI side-scan sonar images and multi-beam swath bathymetry is described. This matches low level features such as edges in the TOBI image, with corresponding features in a synthetic TOBI image created by simulating the flight of the TOBI vehicle through the bathymetry. The method is completely automatic, relatively fast and robust, and much easier than manual registration. It allows accurate positioning of the TOBI vehicle, enhancing its usefulness as a research tool. The method is illustrated by automatic registration of TOBI and multi-beam bathymetry data from the Mid-Atlantic Ridge.  相似文献   

16.
There is a pressing need for standardization of data derived from bathy‐metric swath‐mapping systems. Currently several dozen multibeam and sidescan sonar data formats exist within the oceanographic community, and more can be expected as new systems are developed. Without some standardization of swath‐mapping data formats, the capability for use and integration of data from different systems will be severely compromised.

This paper presents a strategy for organizing swath bathymetry data in a logical modular fashion that will allow data from all current swath bathymetric sonar systems to be stored and accessed in a common fashion. We have chosen the approach of defining compact efficient modules for each logically independent portion of a data record and storing it in a manner that is portable between diverse computer architectures and operating systems. This approach is extensible to accommodate new types of data. Although specifically developed for swath bathymetry, this format is also capable of supporting digital sidescan data and other types of swath data.  相似文献   

17.
18.
Acoustic backscatter images of the seafloor obtained with sidescan sonar systems are displayed most often using a flat bottom assumption. Whenever this assumption is not valid, pixels are mapped incorrectly in the image frame, yielding distorted representations of the seafloor. Here, such distortions are corrected by using an appropriate representation of the relief, as measured by the sonar that collected the acoustic backscatter information. In addition, all spatial filtering operations required in the pixel relocation process take the sonar geometry into account. Examples of the process are provided by data collected in the Northeastern Pacific over Fieberling Guyot with the SeaMARC II bathymetric sidescan sonar system and the Sea Beam multibeam echo-sounder. The nearly complete (90%) Sea Beam bathymetry coverage of the Guyot serves as a reference to quantify the distortions found in the backscatter images and to evaluate the accuracy of the corrections performed with SeaMARC II bathymetry. As a byproduct, the processed SeaMARC II bathymetry and the Sea Beam bathymetry adapted to the SeaMARC II sonar geometry exhibit a 35m mean-square difference over the entire area surveyed.On leave at the Naval Research Laboratory, Code 7420, Washington D.C. 20375-5350.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号