首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 174 毫秒
1.
海洋中光后向散射系数的变化包含了浮游植物生物量的信息, 可应用于卫星遥感和光学剖面观测平台获取海洋中大时空尺度-高分辨率剖面的浮游植物生物量变化特征。本文选取了琼东上升流影响下生物—光学变异性较为显著的海域, 基于2013年航次实测数据, 建立了颗粒物后向散射系数(bbp)与叶绿素a浓度(Chl a)间的区域性关系模型。模型假定颗粒物后向散射系数由不随叶绿素浓度变化的固定背景值, 以及较大粒级(>2μm)和pico级(微微型, <2μm)两类浮游植物的后向散射贡献累加所得。采集的数据集进行了模型检验, 结果表明, 模型能很好地模拟琼东海域水体的bbp与Chl a间的变化趋势, 性能优于常用的幂函数关系模型, 尤其在低叶绿素浓度范围, 很好地解决幂函数显著低估的现象; 琼东海域的bbp和Chl a关系存在显著的水层变化, 底层后向散射固定背景值显著高于上层水体背景值, 表明底层受上升流的影响, 水体中不随Chl a共变的颗粒物浓度增大, 其后向散射相应增强; 叶绿素最大层的后向散射固定背景值显著低于上层其他水体的固定背景值, 后向散射固定背景值的贡献百分比约为21%~35%; 随着叶绿素浓度增大, 较大粒级的浮游植物对颗粒物后向散射系数的贡献也显著增大, 可达到50%以上, pico级浮游植物贡献稳定在40%附近。本研究的结果将为琼东海域浮游植物生物量的光学遥感、生物地球化学过程研究提供更为精确的区域性模型和基础支撑数据。  相似文献   

2.
基于浮游植物吸收光谱提取粒径参数   总被引:1,自引:0,他引:1       下载免费PDF全文
在南海北部、大亚湾及珠江口3个不同水体生物-光学数据的基础上, 研究了浮游植物粒径结构的变化特征, 建立了基于浮游植物吸收光谱提取的浮游植物粒径参数(S<f>)的混合光谱模型。南海海区不同的水体环境下浮游植物的粒级结构有着很大的差异: 在河口和沿岸水体小型浮游植物占优势, 在外海水体微微型浮游植物占优势。浮游植物粒径参数随小型浮游植物增多而减少, 随微微型浮游植物增多而增大。叶绿素a浓度从外海到沿岸逐渐增大, 浮游植物粒径参数随叶绿素a浓度的增大而减小, 它们之间呈幂函数关系。结果表明, 利用混合光谱模型得到的浮游植物粒径参数与南海海区不同水体的生物-光学特征(粒级结构Rpico和Rmicro、粒级指数SI、叶绿素a浓度)有一定的相关性。具体的相关性表示为: S<f>与粒级结构(Rpico和Rmicro)存在一定的关系, 与小型浮游植物和微微型浮游植物之间的线性相关系数分别是0.55和0.65; S<f>与浮游植物粒级指数(SI)有较好的线性关系, 相关系数是0.57; S<f>与叶绿素a浓度呈幂函数关系, 相关系数是0.64。这个混合光谱模型为从光学参数反演浮游植物种群的生态学信息提供了有效的手段, 同时又可用于分析浮游植物优势粒径结构对光学特性的影响。  相似文献   

3.
珠江口颗粒物吸收系数与盐度及叶绿素a浓度的关系   总被引:7,自引:0,他引:7  
海水中总颗粒物的吸收系数可表达成非藻类颗粒物与浮游植物的吸收系数之和,利用可定量测量的滤膜技术(QFT)测定水体中颗粒物光谱吸收系数。非藻类颗粒物的吸收系数随着波长的增大而减小,可用指数衰减规律来描述;光谱斜率S较离散,但平均值与文献报道的一类水体S的平均值很接近;光谱截距ad0(λ0)随盐度增大而减小,二者有很好的线性关系。浮游植物的比吸收系数和叶绿素a浓度之间存在非线性关系,但是,比吸收系数与叶绿素a浓度之间的非线性关系同时还与波长有关,在叶绿素a的2个吸收峰443nm和670nm附近非线性关系特别明显,而在530-640nm之间两者的非线性关系则较弱。  相似文献   

4.
浮游植物的粒级结构是一个重要的生物参数。基于南海北部海区不同水体环境下测量的生物光学数据, 作者深入研究了粒级结构对浮游植物吸收光谱的影响。结果表明, 选择443和510nm波段计算得到的浮游植物光谱斜率S对粒级结构的变化具有较高的敏感性, 其随着小型浮游植物比例的增大呈不断增加的趋势。S与水体叶绿素a浓度、浮游植物吸收系数(aph(443))之间表现出明显的正相关特征。以40%为界对不同粒级浮游植物的优势进行定义, 发现在S与叶绿素a浓度、aph(443)的关系分布中小型(Micro)和微微型(Pico)浮游植物占据优势的水体表现出较为明显的分界, 叶绿素a浓度和aph(443)分别在0.70mg•m-3和0.05m-1附近, 相应的S在0.0004(m•nm)-1左右。基于实测数据建立的遥感反射率蓝绿波段比值与S之间的统计关系, 决定系数高达0.91, 为从水色遥感数据反演浮游植物粒级结构提供了重要手段。  相似文献   

5.
以粤港澳大湾区中山市及其邻近水域河网水体为试验区, 同步采集现场光谱及水质数据, 研究受测水体的高光谱反射率特征, 并分析非光学活性参数中化学需氧量(CODCr)、总磷(TP)浓度与高光谱反射率的相关性。结果显示, 各河流水体光谱反射率主要受悬浮颗粒物和叶绿素a的影响; 在500~680nm波段范围内, 水体光谱反射率大小与CODCr、TP浓度呈负相关关系; 与单波段相比, 特定波段的反射率比值与CODCr、TP浓度值的相关性较高, 与CODCr、TP浓度值相关性最高的反射率比值波段组合分别为R675/R794R690/R815。选择上述波段组合建立的水质反演模型具有良好的估算精度, 模型估算平均相对误差分别为27.2%、32.1%, 表明高光谱技术在珠江口河网水体非光学活性参数CODCr、TP浓度反演上具有较大的应用潜景。  相似文献   

6.
2011 年春夏季黄、东海浮游植物粒级结构   总被引:4,自引:3,他引:1  
通过2011年4月和8月利用"科学三号"考察船在黄、东海海域开展的春、夏季综合调查,研究了黄、东海浮游植物粒级结构的分布格局及其时空变动规律,探讨重要环境因子的变动对浮游植物粒级结构的影响。结果表明,春季表层水体中小型、微型和微微型粒级叶绿素a浓度的范围分别为0—4.36、0.02—2.27、0—2.66mg/m3,平均叶绿素a的浓度分别为0.56、0.31和0.14mg/m3,对叶绿素a总量的贡献率分别为55.4%、30.8%和13.8%。夏季表层由大至小3个粒级浮游植物叶绿素a浓度范围分别为:0—6.78、0—2.59、0—0.86mg/m3,平均叶绿素a含量依次为0.50、0.24和0.07mg/m3,对叶绿素a总量的贡献率分别为61.8%、30.1%和8.1%。春季小型浮游植物叶绿素a浓度的垂直分布较为均匀,微型和微微型浮游植物浓度随深度增加呈现逐渐下降趋势。夏季叶绿素a浓度出现明显分层现象,10m层以上小型和微型浮游植物浓度较高,10m层之下浓度迅速降低。微微型浮游植物浓度在不同水层都保持较低水平。受黄、东海不同季节水团影响而引起的温、盐以及营养盐分布格局的变化是影响黄、东海浮游植物粒级结构组成的重要因素。  相似文献   

7.
颗粒物粒径分布(Particle Size Distribution, PSD)代表了颗粒物浓度与颗粒物粒径之间的关系, 影响着海洋生态环境和水体光学特性等。文章基于2016年夏季航次调查的生物光学剖面数据, 研究了南海海盆海域PSD的分布特征。研究发现, 幂律函数可以较好地拟合南海海盆区域的PSD, 对数空间中的实测的PSD与模拟的PSD平均决定系数高达0.95。PSD斜率(ξ)的分布范围为[1.27, 7.65], 均值为3.93±0.56。南海海盆区域表层水体的ξ均值与全球大洋表层水体的ξ均值相近, 但高于海湾等表层水体的ξ均值。ξ能较好地表征颗粒物平均粒径DA的大小, 两者存在明显负相关关系, 即ξ值越高, DA越小; 反之, DA越大。通过分析T1断面的生物光学剖面数据及总体平均的PSD剖面数据, 发现PSD剖面分布特征如下: 1)表层水体的ξ值相对较高, 且DA值相对较低, 推测可能是由于微微型藻类为主导颗粒物所致; 2) ξ值极小值层出现在次表层叶绿素浓度极大值层(Subsurface Chlorophyll Maximum Layer, SCML)中, 并伴随DA极大值层的出现, 其原因可能是SCML中的大粒径浮游植物占比显著增加; 3)弱光层中的ξ值较SCML中的高, 但略低于表层的ξ值, 而DA则位于表层与SCML的DA之间, 这可能与浮游植物及其碎屑的絮凝、分解、沉降等过程相关。PSD特征影响着海水的固有光学特性, 分析发现: 由于SCML中的叶绿素浓度增加, 颗粒物散射系数(bp(532))和颗粒物后向散射系数(bbp(532))也相应呈现显著增加的趋势。弱光层中的平均bp(532)与平均bbp(532)最小。ξ与颗粒物衰减光谱斜率之间呈高分散性, Boss 等(2001b)的模型适合用于粗略估算区域性的ξ分布范围及均值。  相似文献   

8.
为提高我国海洋水色遥感技术和海水环境监测水平,文章根据北海区海水遥感现场监测数据,基于经验算法和荧光基线高度法的回归分析,开展海水表层叶绿素a浓度的遥感定量反演,并选取北黄海近岸海域样本数据进行算法检验。研究结果表明:辽东湾等9个北海区典型海域具有相同或相似海水表层光学特性,适宜建立海水表层叶绿素a浓度遥感定量反演模型;典型海域海水表层叶绿素a浓度与遥感反射率之间的相关关系较强,模型均为简单波段比值模型;二类海水研究区域海水表层叶绿素a浓度与荧光基线高度之间的相关关系不明显;北黄海近岸海域海水表层叶绿素a浓度的最优模型遥感定量反演值的相对误差的平均值为0.669μg/L。  相似文献   

9.
2016年3月对西太平洋马里亚纳区域M2海山浮游植物粒级结构和分粒级初级生产力进行了观测,同时结合温度、盐度和营养盐浓度,研究了M2海山的总叶绿素a浓度的分布规律,不同粒级浮游植物对总叶绿素a的贡献率及其与环境因子的关系,初级生产力结构和分布特征。结果表明:M2海山各水层叶绿素a浓度变化范围分别为0.004—0.304mg/m3,平均叶绿素a浓度为0.094mg/m3。微微型浮游植物在整个调查区域内为最优势类群,对总叶绿素a浓度的贡献率达到了85%,微型浮游植物和小型浮游植物的贡献率均较低,分别为10%和5%。M2海山的叶绿素a浓度最大层均在100m深度附近的次表层,其中西南部和东南部为叶绿素a浓度高值区。M2海山的平均初级生产力为71.31mgC/(m2·d),初级生产力的主要贡献者为微型和微微型浮游植物,其中微型浮游植物贡献率达到了72%,微微型浮游植物贡献率为28%。M2海山的海山效应不明显,浅海山(<200m)可能对浮游植物的生长存在促进作用。  相似文献   

10.
2014年冬季对西太平洋雅浦区Y3海山及其邻近大洋海域不同粒径浮游植物叶绿素a浓度进行了现场观测,同时结合温度、盐度、营养盐数据,分析了Y3海山区总叶绿素a浓度分布情况,不同粒级浮游植物对总叶绿素a浓度的贡献率及其与环境因子的关系,并与热带西太平洋大洋区(DY断面)进行了比较。结果表明:Y3海山A、B断面与DY断面水体平均叶绿素a浓度相差不大,分别为0.057、0.054和0.051mg/m3,A、B和DY三个断面各水层(0、30、75、100、150和200m)叶绿素a浓度变化范围分别为0.009—0.205、0.005—0.236和0.007—0.229mg/m3。不同粒级浮游植物的叶绿素a占总叶绿素a的比例从大到小依次为微微型浮游植物、微型浮游植物和小型浮游植物,三者在各断面的比例分别为A断面:59.97%,25.39%,14.64%;B断面:50.87%,30.70%,18.43%;DY断面:55.87%,29.87%,14.26%。微微型浮游植物在整个调查区域为优势类群,在A、B和DY三个断面的平均浓度分别为0.025、0.026和0.029mg/m3。各站位均有次表层叶绿素a浓度最高值现象,其中Y3海山区西南部和东南部为叶绿素a浓度高值区。洋流、温度和营养盐均对叶绿素a浓度分布有一定的影响。本研究发现海山经典假说不适用于2014年冬季的Y3海山区。  相似文献   

11.
基于遥感手段准确估算浮游植物吸收系数aph(l), 可为长时间、大尺度范围识别浮游植物功能种群提供有力的数据和方法支撑。利用2003至2012年获取自南海、琼东、广东近岸和珠江口各典型海区的实测aph(l)数据, 对比分析表层光谱特征, 初步判断浮游植物种群结构差异; 基于MODIS-Aqua二级遥感反射率产品, 分别采用经验算法PL和半分析算法QAA对aph(l)遥感产品进行精度评估。结果表明, 以南海、琼东为代表的清洁海域和以广东沿岸、珠江口为代表的浑浊海域表层aph(l)光谱差异明显; aph(l)在清洁海域量值较小但在颗粒物吸收中居于主导, 而在浑浊海域并不占优; 浮游植物单位吸收系数aph*(l)存在明显的空间差异, 色素打包效应以及色素组成是造成差异的可能原因。经验算法PL较之于半分析算法QAA反演得到的aph(l)(l=412, 443, 490)遥感产品精度更高, 平均相对误差APD小于22%; 采用区域优化算法NOCI获得的Chl-a产品作为输入参数, 算法PL所得的aph(l)遥感产品APD不超过14%。结果表明, 基于水色遥感产品进行aph(l)遥感产品精度评估和探讨不同海区浮游植物功能种群具有较强应用前景。  相似文献   

12.
2009年2月在南海北部海域现场观测粒度分级叶绿素a质量浓度和初级生产力(PP)的分布。结果表明,调查海域水柱平均叶绿素a质量浓度的变化范围为0.11~8.37 mg/m3,平均为(1.28±2.23) mg/m3,高值区出现在珠江口及近岸海域;初级生产力的范围为344.8~1 222.5 mgC/(m2·d),平均为(784.2±351.4) mgC/(m2·d),高值区位于近岸及陆架海域。浮游植物粒度分级测定结果表明,在生物量较高的近岸海域,叶绿素a的粒级结构以小型浮游植物占优势,其贡献率为40.9%,微型和微微型浮游植物对总叶绿素a的贡献率分别为34.6%和24.5%;而在生物量较低的陆坡和开阔海域,各粒级浮游植物对叶绿素a的贡献率由大到小依次为微微型浮游植物(78.9%),微型浮游植物(17.2%)和小型浮游植物(3.9%)。相关性分析结果表明,调查海域分级叶绿素a的区域化分布特征与洋流运动下营养盐的分布密切相关,同时叶绿素a又高度影响着此区域PP的分布。此外,我们将调查海域实测所得浮游植物最佳光合作用速率与采用垂向归一化初级生产力模型估算的数据进行对比,发现后者明显低于前者,这说明通过水温估算最佳光合作用速率的算法在冬季南海北部可能存在低估。  相似文献   

13.
用多层感知器模型由吸收光谱反演浮游植物色素   总被引:1,自引:0,他引:1       下载免费PDF全文
浮游植物吸收光谱已逐渐成为高光谱水色遥感的可获取参量。文章采用了多层感知器模型, 由珠江口担杆群岛附近水体的浮游植物吸收光谱进行了色素浓度的反演, 感知器的输入量是浮游植物吸收光谱, 输出量分别对应叶绿素a、叶绿素b、叶绿素c、光保护类胡萝卜素和非光保护类胡萝卜素五大类主要色素的浓度。分析结果表明, 叶绿素a和叶绿素c估算结果的平均相对偏差比较低, 在测试数据集中两者的偏差分别为19.06%和15.90%; 光保护类胡萝卜素和非光保护类胡萝卜素的估算浓度的相对偏差比较高, 对于测试数据而言, 分别为37.62%和36.96%; 叶绿素b浓度在测试数据集中的估算相对偏差约为27.47%。五大类色素在测试数据集和训练数据集的估算偏差比较接近, 已训练好的多层感知器可用于担杆岛水体中色素信息的反演。同时, 此色素反演方法也为遥感监测水体浮游植物种群动态提供了重要的手段。  相似文献   

14.
2017年6月在珠江口及近岸海域61个站位采集了悬浮颗粒物生物硅(BSi,biogenic silica)和叶绿素a(Chl a)。利用RAGUENEAU et al(2005)提出的碱提取法测定了悬浮颗粒物生物硅,探讨不同环境条件下BSi浓度以及碱性提取液中岩源硅(LSi,lithogenic silica)的干扰程度。结果显示,Chl a质量浓度范围为0.06~8.64 μg·L-1,悬浮颗粒物BSi浓度从低于检测限到14.3 μmol·L-1,LSi浓度范围为0.00~9.56 μmol·L-1;LSi/(LSi+BSi)比均值为0.38 mol·mol-1。提取液中测得的Si/Al比均值为2.42 mol·mol-1,与RAGUENEAU et al(2005)报道值接近。研究区域内的表层BSi反映了硅藻的生物量,与Chl a存在显著线性相关。LSi对BSi测量的干扰程度存在明显的空间差异,总体上近岸BSi和LSi高,LSi/(LSi+BSi)比低;外海BSi和LSi低,LSi/(LSi+BSi)比高;河口内BSi低,LSi高,LSi/(LSi+BSi)比高;上升流区BSi和LSi高,LSi/(LSi+BSi)比高;底层较表层具有更高的LSi和LSi/(LSi+BSi)比。最后,对常用的几种碱提取法在应用时存在的问题作了探讨。  相似文献   

15.
于2019年3月、7月和10月对长江口及邻近海域有色溶解有机物(CDOM)的分布及河口混合行为进行分析研究。通过对盐度、吸收光谱斜率S275~295、吸收系数aCDOM(355)以及叶绿素a的分析发现,在河口内低盐度区,7月淡水流量大,陆源输入量最大,aCDOM(355)值最高,3月CDOM来源主要受陆源输入和浮游植物生产活动的影响,aCDOM(355)值较10月高;在口外高盐度区,3月和7月的aCDOM(355)值相近,均低于10月,CDOM分布主要受浮游植物生产活动的影响。利用三维荧光光谱?平行因子分析方法共鉴定出4个荧光组分:类蛋白质组分C1(280/330 nm)、类腐殖质组分C2(300/350 nm)、类腐殖质组分C3(260/465 nm)和类腐殖质组分C4(320/410 nm)。在3月、7月及10月,4个荧光组分强度由长江口内到口外呈递减趋势,受陆源输入和浮游植物生产活动的影响,平均荧光强度的季节变化总体上来说,由大到小依次为7月、10月、3月。3个季节CDOM荧光组分均存在偏离理论稀释线的现象,说明CDOM的来源(陆源输入、沉积物再悬浮和现场生物活动)和去除(被颗粒物吸附、光降解和细菌降解)机制复杂多变,揭示了长江口区域CDOM在不同时空下的不保守混合行为。  相似文献   

16.
叶绿素a浓度是估算海洋初级生产力的一个重要参数, 在海洋中垂向分布极不均匀, 其分布特征及影响机制是海洋生态学研究的重要基础问题。利用海洋光学观测的高垂向分辨率剖面数据, 系统地研究叶绿素a浓度垂向剖面的时空分布特征及其与海洋动力环境要素的关系, 可为揭示南海典型动力过程的生态环境效应提供重要基础。文章基于2015年夏季黑潮调查航次实测生物光学剖面, 利用676nm处吸收基线高度(aLH(676))与叶绿素a浓度(Chla)之间的关系, 建立了具有较高反演精度的叶绿素a浓度反演算法(Chla=49.96×(aLH(676))0.9339, 决定系数R2=0.87和均方根误差RMSE=0.16mg·m-3); 进一步结合观测期间物理过程, 揭示了叶绿素垂向分布对不同水动力过程的响应特征。研究结果表明, 近岸区域表层叶绿素a浓度变化范围为0.42~1.57mg·m-3, 随着水深增加, 叶绿素a浓度逐渐降低, 在沿岸上升流影响区域, 叶绿素a浓度明显增高, 垂向上相对趋于均一分布; 次表层叶绿素极大值(Subsurface Chlorophyll Maximum, SCM)现象在外海显著存在, 受中尺度过程影响明显, SCM深度在34m到100m之间变化, 在吕宋岛以西海域, 黑潮入侵加速了上层水体的混合, SCM所在水层被显著抬升至34m左右; 在冷涡影响区域, 次表层叶绿素极大值层被抬升, 涡旋中心比涡旋边缘抬升更为显著, 同时SCM的厚度增大。  相似文献   

17.
长江口及其邻近海域CDOM光谱吸收特性分析   总被引:3,自引:0,他引:3  
研究了长江口及其邻近海域有色可溶性有机物(CDOM)的光吸收特性,分析了CDOM浓度(吸收系数a(440))、光谱斜率(Sg)与盐度的关系。结果表明:长江口及其邻近海域CDOM的a(440)变化范围为0.21~0.85 m-1,平均值为0.44 m-1;Sg值的范围为0.013 3~0.016 7 nm-1,平均值为0.014 nm-1;a(440)的水平分布表现为长江口海区比外海区高,Sg的水平分布表现为长江口海区比外海区低,反映了长江口海区CDOM中的腐殖酸成分比外海区大。研究区内a(440)与盐度、Sg与盐度明显线性相关,表明CDOM在河口混合行为中呈保守行为,CDOM具有良好的保守性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号