首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
颗粒物粒径分布(Particle Size Distribution, PSD)代表了颗粒物浓度与颗粒物粒径之间的关系, 影响着海洋生态环境和水体光学特性等。文章基于2016年夏季航次调查的生物光学剖面数据, 研究了南海海盆海域PSD的分布特征。研究发现, 幂律函数可以较好地拟合南海海盆区域的PSD, 对数空间中的实测的PSD与模拟的PSD平均决定系数高达0.95。PSD斜率(ξ)的分布范围为[1.27, 7.65], 均值为3.93±0.56。南海海盆区域表层水体的ξ均值与全球大洋表层水体的ξ均值相近, 但高于海湾等表层水体的ξ均值。ξ能较好地表征颗粒物平均粒径DA的大小, 两者存在明显负相关关系, 即ξ值越高, DA越小; 反之, DA越大。通过分析T1断面的生物光学剖面数据及总体平均的PSD剖面数据, 发现PSD剖面分布特征如下: 1)表层水体的ξ值相对较高, 且DA值相对较低, 推测可能是由于微微型藻类为主导颗粒物所致; 2) ξ值极小值层出现在次表层叶绿素浓度极大值层(Subsurface Chlorophyll Maximum Layer, SCML)中, 并伴随DA极大值层的出现, 其原因可能是SCML中的大粒径浮游植物占比显著增加; 3)弱光层中的ξ值较SCML中的高, 但略低于表层的ξ值, 而DA则位于表层与SCML的DA之间, 这可能与浮游植物及其碎屑的絮凝、分解、沉降等过程相关。PSD特征影响着海水的固有光学特性, 分析发现: 由于SCML中的叶绿素浓度增加, 颗粒物散射系数(bp(532))和颗粒物后向散射系数(bbp(532))也相应呈现显著增加的趋势。弱光层中的平均bp(532)与平均bbp(532)最小。ξ与颗粒物衰减光谱斜率之间呈高分散性, Boss 等(2001b)的模型适合用于粗略估算区域性的ξ分布范围及均值。  相似文献   

2.
海水养殖已成为近海水体环境的重要污染源, 叶绿素a作为水体浮游植物生物量的一个重要参数, 是水质评价的重要指标。本文以广东省柘林湾为研究区域, 采用2018年9月4日的哨兵2号(Sentinel-2)影像与海水养殖区水体中实测的叶绿素a浓度数据构建了叶绿素a浓度的单波段模型、比值模型、三波段模型与归一化叶绿素a指数模型(Normalized Difference Chlorophyll Index, NDCI)等估算模型; 通过对比评价, 以反演精度高的模型估算了2018年多个月份的叶绿素a浓度, 并分析其分布特征。结果显示: 1) NDCI模型的反演精度明显高于其他模型, 其可决系数R2为0.8, 均方根误差(Root Mean Square Error, RMSE)为9.7, 平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)为0.99; 利用实测数据对NDCI模型的时间适用性进行检验, 表明NDCI模型能有效地估算出叶绿素a浓度的空间分布特征。2) 叶绿素a浓度呈现出从近岸向湾外逐步降低的趋势, 养殖区中叶绿素a浓度的总体趋势为池塘养殖区>滩涂插养区>网箱养殖区>浮筏养殖区; 受到水体交换、降雨及养殖活动的影响, 池塘养殖区中的叶绿素a浓度在投放幼苗期的2月最低, 其变化趋势为2月<4月<6月<12月。本文的研究结果可为相关部门对柘林湾养殖水体的环境监测提供参考。  相似文献   

3.
2009年2月在南海北部海域现场观测粒度分级叶绿素a质量浓度和初级生产力(PP)的分布。结果表明,调查海域水柱平均叶绿素a质量浓度的变化范围为0.11~8.37 mg/m3,平均为(1.28±2.23) mg/m3,高值区出现在珠江口及近岸海域;初级生产力的范围为344.8~1 222.5 mgC/(m2·d),平均为(784.2±351.4) mgC/(m2·d),高值区位于近岸及陆架海域。浮游植物粒度分级测定结果表明,在生物量较高的近岸海域,叶绿素a的粒级结构以小型浮游植物占优势,其贡献率为40.9%,微型和微微型浮游植物对总叶绿素a的贡献率分别为34.6%和24.5%;而在生物量较低的陆坡和开阔海域,各粒级浮游植物对叶绿素a的贡献率由大到小依次为微微型浮游植物(78.9%),微型浮游植物(17.2%)和小型浮游植物(3.9%)。相关性分析结果表明,调查海域分级叶绿素a的区域化分布特征与洋流运动下营养盐的分布密切相关,同时叶绿素a又高度影响着此区域PP的分布。此外,我们将调查海域实测所得浮游植物最佳光合作用速率与采用垂向归一化初级生产力模型估算的数据进行对比,发现后者明显低于前者,这说明通过水温估算最佳光合作用速率的算法在冬季南海北部可能存在低估。  相似文献   

4.
叶绿素a质量浓度是水体富营养化的重要指标,及时和有效地对水体叶绿素a质量浓度进行监测和评价,对环境保护十分必要。本文基于2011年至2016年的卫星遥感数据,分析了北部湾海表叶绿素a质量浓度的时空分布特征。研究结果表明:北部湾叶绿素a质量浓度有明显的月变化和季节性变化,北部湾叶绿素a月平均质量浓度在8月和1月分别达到峰值,北部湾冬季与夏季的叶绿素a季平均质量浓度高于春季和秋季,夏季北部湾海域表层的叶绿素a质量浓度开始迅速升高,秋季北部湾中南部叶绿素a质量浓度呈下降的趋势。在空间分布上,北部湾近岸海域叶绿素a质量浓度平均水平较高,叶绿素a质量浓度高值区集中在湾北部雷州半岛西部沿岸的浅水区海域,而低值区在湾中部以及湾南部的深水区海域。  相似文献   

5.
叶绿素a质量浓度是水体水环境一个重要指标。本文结合实测的叶绿素a质量浓度、水体的光谱数据和FY-3A中等分辨率成像光谱仪的数据,研究利用FY-3A遥感监测湛江湾及其邻近海域叶绿素a质量浓度的可行性。研究结果表明,湛江湾海域大部水体接近一类水体,二类水体主要集中在湛江港附近的狭小封闭海域;OC4算法可以用于湛江湾海域的叶绿素a质量浓度的遥感监测,实测叶绿素a质量浓度与反演的叶绿素a质量浓度具有较好的相关性,相关系数R达到0.7以上;FY-3A中等分辨率成像光谱仪的数据可以较好地反映湛江湾海域叶绿素a质量浓度的空间分布。  相似文献   

6.
文章使用2019年7月5日—20日在珠江河口伶仃洋定点连续观测的海表面叶绿素a质量浓度、海表面气温、气压、风速、风向、海表温度、盐度、流速、流向、遥感降雨量数据和中等分辨率成像光谱仪可见光波段影像, 利用小波分析和集成经验模态分解方法分析了观测期间内伶仃洋海表面叶绿素a的时间变化特征及其影响因子。分析结果表明, 观测期间海水表层叶绿素a质量浓度的变化范围为0.44~1.75µg·L-1, 平均值为0.80µg·L-1, 其变化周期主要为6h、12h和24h。其与相对应周期的潮流存在明显的相位关系, 并且在降雨后两者的相位关系发生了转换。7月5日—12日, 叶绿素a与潮流基本呈反相位关系, 涨急时叶绿素a质量浓度低, 落急时叶绿素a质量浓度较高, 浓度相差约为0.3µg·L-1。珠江流域在7月8日—13日发生了一次强降雨过程, 降雨前后海水表层叶绿素a质量浓度在6h、12h和24h周期波段的振幅由0.02~0.09µg·L-1增加到0.15µg·L-1左右。同时, 降雨对珠江河口的叶绿素a质量浓度造成了一个持续80h的增加过程, 浓度增加了0.3µg·L-1。发生降雨后, 7月13日—20日期间潮流滞后于叶绿素a约6h, 水位最高时叶绿素a质量浓度最低, 水位最低时叶绿素a质量浓度最高。由以上结果可以看出, 降雨不仅引起了河口区叶绿素a质量浓度的增加, 还造成了叶绿素a和潮流间相位关系的转换。  相似文献   

7.
本文基于卫星遥感的叶绿素a浓度与颗粒物后向散射系数月平均数据以及其他海洋与气象参数,详细分析了两个生物光学参量在季节尺度上的相关性及其与物理参数的耦合关系,并运用光驯化模型分析了南海表层水体浮游植物的生理学季节变化特征。结果表明,受南海地形和风场等物理参量的变化,南海叶绿素a浓度与颗粒物后向散射系数存在显著的季节和空间分布特征,具有一定的共变性和差异性。在南海近岸及浅水区,叶绿素a浓度与颗粒物后向散射系数有很好的耦合关系;而在南海深水海盆区,叶绿素a浓度冬高夏低,其季节循环过程与颗粒物后向散射系数相反,这主要是受浮游植物生理学过程的影响。"生物量控制区"与"光驯化控制区"的分界在南海与陆架-海盆分界线一致,体现了水深条件对浮游植物生理状态的影响。此外本文还发现,在吕宋海峡西部海区,叶绿素a与颗粒物后向散射系数的关系表现出"生物量-光驯化共同控制"的特点。  相似文献   

8.
浮游植物是海洋生态系统食物链的基础组成, 并通过光合作用影响着海表二氧化碳通量变化。文章基于高叶绿素a浓度水域面积指标构建南海浮游植物生物量的估算体系。利用遥感数据, 采用经验正交函数分解插值方法, 重构长时间序列的南海叶绿素a浓度场, 并研究了南海高叶绿素a浓度水域面积特征的时空分布。结果发现: 高叶绿素a浓度水域面积变化有着显著季节特征, 在冬季面积达到最大值, 在夏季达到最小值, 但是该水域对应的叶绿素a浓度却在冬季达到最小值, 在夏季达到最大值, 这一特征可能是由于风驱动的海表动力过程使得海表叶绿素重新分布; 空间分布上, 高叶绿素a浓度水域常年存在于海岸附近, 特别是在中国沿海、越南沿岸、泰国湾以及婆罗洲岛附近。在巽他陆架与湄公河口东部中央海盆, 高叶绿素a浓度区域面积呈年际变化。受厄尔尼诺调控的南海季风, 导致不同年份湄公河口东南沿海存在不同程度的北部冷水侵入, 北部冷水入侵可能是引起局地浮游植物生物量增减的原因。  相似文献   

9.
2017年6月在珠江口及近岸海域61个站位采集了悬浮颗粒物生物硅(BSi,biogenic silica)和叶绿素a(Chl a)。利用RAGUENEAU et al(2005)提出的碱提取法测定了悬浮颗粒物生物硅,探讨不同环境条件下BSi浓度以及碱性提取液中岩源硅(LSi,lithogenic silica)的干扰程度。结果显示,Chl a质量浓度范围为0.06~8.64 μg·L-1,悬浮颗粒物BSi浓度从低于检测限到14.3 μmol·L-1,LSi浓度范围为0.00~9.56 μmol·L-1;LSi/(LSi+BSi)比均值为0.38 mol·mol-1。提取液中测得的Si/Al比均值为2.42 mol·mol-1,与RAGUENEAU et al(2005)报道值接近。研究区域内的表层BSi反映了硅藻的生物量,与Chl a存在显著线性相关。LSi对BSi测量的干扰程度存在明显的空间差异,总体上近岸BSi和LSi高,LSi/(LSi+BSi)比低;外海BSi和LSi低,LSi/(LSi+BSi)比高;河口内BSi低,LSi高,LSi/(LSi+BSi)比高;上升流区BSi和LSi高,LSi/(LSi+BSi)比高;底层较表层具有更高的LSi和LSi/(LSi+BSi)比。最后,对常用的几种碱提取法在应用时存在的问题作了探讨。  相似文献   

10.
大亚湾水体后向散射比率的光谱变化   总被引:1,自引:0,他引:1       下载免费PDF全文
采用2007年5月大亚湾浮标定点航次采集的生物-光学数据, 分析了大亚湾水体后向散射比率的光谱变化及其影响因素。分析结果表明, 660nm处后向散射比率变化范围在0.0040—0.0245之间, 均值为0.0082±0.0032, 实测后向散射比率光谱波段间的相对变化不超过15%; 颗粒后向散射比率随着叶绿素a浓度增加呈减小的趋势, 高叶绿素浓度显著对应较低的后向散射比率; 粒径是影响大亚湾水体后向散射比率的重要因素之一, 随着水体中Junge粒级斜率的增大, 颗粒后向散射比率显著增大; 折射率的变化也对后向散射比率产生一定影响, 类似的水体粒径分布情况下, 浮游植物与非藻类物质相对贡献的变化将导致折射率的明显变化, 并将主导水体后向散射比率的变化。  相似文献   

11.
采用HPLC-CHEMTAX方法分析了2008年春季东海近岸海域的表层浮游植物群落结构及其与环境因子的关系。结果表明,调查区表层浮游植物优势类群为硅藻和甲藻,对叶绿素a的平均贡献率分别为42%和32%。硅藻和甲藻均适于生长在低温、低盐和高氮磷比的环境,但硅藻水华发生在温度较低、盐度较高、氮磷比较高的长江冲淡水与外海水交汇的盐度锋面上,而甲藻水华发生在温度较高、盐度较低、氮磷比较低的冲淡水与台湾暖流交汇的温度锋面上。LOWESS回归表明,叶绿素a和甲藻分别随温度和盐度升高呈先增后降的趋势,硅藻随温度和盐度变化波动较大。叶绿素a和硅藻随氮磷比升高而递增,甲藻随氮磷比的变化波动较大。  相似文献   

12.
基于遥感手段准确估算浮游植物吸收系数aph(l), 可为长时间、大尺度范围识别浮游植物功能种群提供有力的数据和方法支撑。利用2003至2012年获取自南海、琼东、广东近岸和珠江口各典型海区的实测aph(l)数据, 对比分析表层光谱特征, 初步判断浮游植物种群结构差异; 基于MODIS-Aqua二级遥感反射率产品, 分别采用经验算法PL和半分析算法QAA对aph(l)遥感产品进行精度评估。结果表明, 以南海、琼东为代表的清洁海域和以广东沿岸、珠江口为代表的浑浊海域表层aph(l)光谱差异明显; aph(l)在清洁海域量值较小但在颗粒物吸收中居于主导, 而在浑浊海域并不占优; 浮游植物单位吸收系数aph*(l)存在明显的空间差异, 色素打包效应以及色素组成是造成差异的可能原因。经验算法PL较之于半分析算法QAA反演得到的aph(l)(l=412, 443, 490)遥感产品精度更高, 平均相对误差APD小于22%; 采用区域优化算法NOCI获得的Chl-a产品作为输入参数, 算法PL所得的aph(l)遥感产品APD不超过14%。结果表明, 基于水色遥感产品进行aph(l)遥感产品精度评估和探讨不同海区浮游植物功能种群具有较强应用前景。  相似文献   

13.
文章分析了2013年南海南部4个季节航次的叶绿素a (Chl a)调查数据, 结果显示: 150m以浅水柱Chl a质量浓度均值分别为早春0.14mg•m-3、初夏0.12mg•m-3、初秋0.18mg•m-3、初冬0.16mg•m-3。早春和初夏偏低的原因与早春风速小, 初夏水温高, 不利于水体的垂直混合, 限制了深层海水中丰富的营养盐向上层水体补充有关。4个季节中海水次表层Chl a质量浓度最大值层(SCML)均出现在50m和75m, 这两个水层的Chl a质量浓度差异小, 季节变化不大, 平均值变化范围分别为0.24~0.26mg•m-3和0.22~0.26mg•m-3。受混合层深度和温跃层上界深度的共同影响, 50m水层Chl a质量浓度主要受制于深层富营养盐海水的向上补充, 75m水层Chl a质量浓度受水温的影响明显。  相似文献   

14.
南海叶绿素a浓度垂直分布的统计估算   总被引:2,自引:0,他引:2  
高姗  王辉  刘桂梅  黄良民 《海洋学报》2010,32(4):168-176
分析整理了1993—2006年近10 a南海北部海域、南沙海域和南海其他海域的叶绿素a浓度历史航次调查资料,基于前人提出的全球叶绿素浓度垂直分布的统计分析模式,根据南海表层叶绿素a浓度大小的不同分级,对南海叶绿素a浓度进行了参数化处理,拟合估算了南海各水层剖面的叶绿素a浓度分布值,并结合不同海区的环境特征,分析了南海叶绿素a浓度垂直分布与其海水物理环境的关系。初步分析结果表明,叶绿素a浓度随深度垂直变化的拟合曲线呈一定倾斜的正态分布特征,当表层叶绿素a浓度较低时,作为南海深水海盆区的代表,拟合值更接近实测平均值的分布,叶绿素a浓度高值集中在次表层剖面上;当表层叶绿素a浓度较高时,作为近岸区和河口区的代表,高值多集中在表层海水,拟合误差偏大。该统计估算模式对于揭示南海叶绿素a浓度垂直分布结构进行了有益的尝试,为发展适合不同海区特点的模式以及校正参数奠定了基础。利用该模式与海洋水色卫星遥感数据有效结合,将对南海叶绿素a浓度时空分布格局的研究具有重要的意义。  相似文献   

15.
叶绿素a浓度是估算海洋初级生产力的一个重要参数, 在海洋中垂向分布极不均匀, 其分布特征及影响机制是海洋生态学研究的重要基础问题。利用海洋光学观测的高垂向分辨率剖面数据, 系统地研究叶绿素a浓度垂向剖面的时空分布特征及其与海洋动力环境要素的关系, 可为揭示南海典型动力过程的生态环境效应提供重要基础。文章基于2015年夏季黑潮调查航次实测生物光学剖面, 利用676nm处吸收基线高度(aLH(676))与叶绿素a浓度(Chla)之间的关系, 建立了具有较高反演精度的叶绿素a浓度反演算法(Chla=49.96×(aLH(676))0.9339, 决定系数R2=0.87和均方根误差RMSE=0.16mg·m-3); 进一步结合观测期间物理过程, 揭示了叶绿素垂向分布对不同水动力过程的响应特征。研究结果表明, 近岸区域表层叶绿素a浓度变化范围为0.42~1.57mg·m-3, 随着水深增加, 叶绿素a浓度逐渐降低, 在沿岸上升流影响区域, 叶绿素a浓度明显增高, 垂向上相对趋于均一分布; 次表层叶绿素极大值(Subsurface Chlorophyll Maximum, SCM)现象在外海显著存在, 受中尺度过程影响明显, SCM深度在34m到100m之间变化, 在吕宋岛以西海域, 黑潮入侵加速了上层水体的混合, SCM所在水层被显著抬升至34m左右; 在冷涡影响区域, 次表层叶绿素极大值层被抬升, 涡旋中心比涡旋边缘抬升更为显著, 同时SCM的厚度增大。  相似文献   

16.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号