首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用2010—2017年南海5个浮标波高观测资料和中国气象局热带气旋最佳路径集中的热带气旋参数, 基于前馈型误差反向传播(Forward Feedback Back Propagation, FFBP)神经网络(Artificial Neural Network, ANN)方法, 分别建立了各浮标站的台风浪高快速计算模型。研究显示, 基于热带气旋中心坐标、中心最低气压、近中心最大风速、热带气旋中心与浮标之间的距离和方位4个参数建立的神经网络模型经反复训练后, 模型输出结果可以很好地拟合观测数据, 各浮标有效波高计算值与观测值的均方根误差小于0.3m, 平均相对误差为5.78%~7.23%, 相关系数大于0.9, 属高度相关。独立测试结果显示, “山竹”( 国际编号: 1822)影响期间有效波高最大值的神经网络模型预报结果与观测值基本吻合, 相对误差为-31.06%~0.98%, 但计算的最大值出现时间和观测情况不完全一致。该计算方法可应用于热带气旋影响期间的有效波高最大值计算, 因而在海洋工程领域和海洋预报领域具有应用前景。  相似文献   

2.
The extreme values of wave climate data are of great interest in a number of different ocean engineering applications, including the design and operation of ships and offshore structures, marine energy generation, aquaculture and coastal installations. Typically, the return values of certain met-ocean parameters such as significant wave height are of particular importance. There exist many methods for estimating such return values, including the initial distribution approach, the block maxima approach and the peaks-over threshold approach. In a climate change perspective, projections of such return values to a future climate are of great importance for risk management and adaptation purposes. However, many approaches to extreme value modelling assume stationary conditions and it is not straightforward how to include non-stationarity of the extremes due to for example climate change. In this paper, various non-stationary GEV-models for significant wave height are developed that account for trends and shifts in the extreme wave climate due to climate change. These models are fitted to block maxima in a particular set of wave data obtained for a historical control period and two future projections for a future period corresponding to different emission scenarios. These models are used to investigate whether there are trends in the data within each period that influence the extreme value analysis and need to be taken into account. Moreover, it will be investigated whether there are significant inter-period shifts or trends in the extreme wave climate from the historical period to the future periods. The results from this study suggest that the intra-period trends are not statistically significant and that it might be reasonable to ignore these in extreme value analyses within each period. However, when it comes to comparing the different data sets, i.e. the historical period and the future projections, statistical significant inter-period changes are detected. Hence, the accumulated effect of a climatic trend may not be negligible over longer time periods. Interestingly enough, such statistically significant shifts are not detected if stationary extreme value models are fitted to each period separately. Therefore, the non-stationary extreme value models with inter-period shifts in the parameters are proposed as an alternative for extreme value modelling in a climate change perspective, in situations where historical data and future projections are available.  相似文献   

3.
1988-2002年黄海和渤海风浪后报   总被引:2,自引:1,他引:1  
本文对黄海和渤海风浪开展长期后报实验,时间范围覆盖1988至2002年,并分析相应的区域波候特征。首先,模式输出的月平均有效波高和卫星数据比对一致。其次,我们讨论了气候态月平均有效波高和平均波周期的时空分布特征。有效波高和平均波周期的气候态空间分布都呈现出西北-东南、或由近岸向深水区增加的趋势,这种空间的分布特征和局地的风强迫和水深密切相关。同时,海浪参数的季节变化也较显著。进一步,我们统计分析了风场和有效波高的极值,给出并揭示了黄海和渤海多年一遇有效波高的空间结构,并讨论了有效波高极值和风强迫极值之间的联系。  相似文献   

4.
利用JASON-1和TOPEX/POSEIDON卫星高度计在相互校正阶段的观测资料,对两者在中国海和西北太平洋测得的海面风速、有效波高、后向散射截面、海平面高度等参数进行一致性分析;利用j,v模型及主要分潮的调和常数,对中国陆架浅海的JASON-1海平面高度数据进行浅海潮汐修正,使用验潮站月平均水位资料对修正结果加以印证。结果显示,2颗高度计观测的海洋环境参数具有强相关性,JASON-1具备了完成延续TOPEX/POSEIDON数据集这一使命的条件。但是,2套系统对于同一海洋环境参数的观测还是存在不能忽略的差异,对这种差异进行了分析,并给出了修正模型。所使用的浅海潮汐修正方法有效地抑制了中国陆架浅海潮波对海平面高度反演的影响,所使用浅海水域的5个验潮站月平均水位资料与JASON-1高度计经过浅海潮汐修正后的海平面高度的相关系数为0.738,标准偏差为0.096m。通过进一步融合JASON-1和TOPEX/POSEIDON在并行飞行期间的海平面高度数据并与验潮站资料比较显示,两者的相关系数提高到0.83,标准偏差为0.067m。  相似文献   

5.
张熠  程涛 《中国海洋工程》2016,30(4):549-564
With noticing an increasing number of failure events for offshore structures in the present days, it is now realized that modeling the marine environment especially for exceptional environmental conditions is quite important. It is recognized that a possible improvement in the traditional modeling of environmental characteristics, which are the basis for the load models for structural analysis and design, may be needed. In this paper, the seasonal and directional varying properties in modeling the ocean parameter, the wave height, are studied. The peak over threshold (POT) method is selected to model the extreme wave height by utilizing a non-stationary discrete statistical extreme model. The varying parameters are taken into account with a changing pattern to reflect the seasonal and directional dependent behavior. Both the magnitude and the occurrence rate of the extreme values are investigated. Detailed discussion on the continuity of the established model is also given. The importance of the proposed model is demonstrated in reliability analysis for a jacket structure. The sensitivity to the changing marine environment in reliability analyses is investigated.  相似文献   

6.
张熠  程涛 《海洋工程》2016,(4):549-564
With noticing an increasing number of failure events for offshore structures in the present days, it is now realized that modeling the marine environment especially for exceptional environmental conditions is quite important. It is recognized that a possible improvement in the traditional modeling of environmental characteristics, which are the basis for the load models for structural analysis and design, may be needed. In this paper, the seasonal and directional varying properties in modeling the ocean parameter, the wave height, are studied. The peak over threshold (POT) method is selected to model the extreme wave height by utilizing a non-stationary discrete statistical extreme model. The varying parameters are taken into account with a changing pattern to reflect the seasonal and directional dependent behavior. Both the magnitude and the occurrence rate of the extreme values are investigated. Detailed discussion on the continuity of the established model is also given. The importance of the proposed model is demonstrated in reliability analysis for a jacket structure. The sensitivity to the changing marine environment in reliability analyses is investigated.  相似文献   

7.
Prediction of Extreme Significant Wave Height from Daily Maxima   总被引:4,自引:0,他引:4  
LIU  Defu 《中国海洋工程》2001,(1):97-106
For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1-3 years) is used in design practice. In this paper two methods are proposed to predict extreme significant wave height based on short-term daily maxima. According to the da-a recorded by the Oceanographic Station of Liaodong Bay at the Bohai Sea, it is supposed that daily maximum wave heights are statistically independent. The data show that daily maximum wave heights obey log-normal distribution, and that the numbers of daily maxima vary from year to year, obeying binomial distribution. Based on these statistical characteristics, the binomial-log-normal compound extremum distribution is derived for prediction of extreme significant wave heights (50-100 years). For examination of its accuracy and validity, the prediction of extreme wave heights is based on 12 years' data at this station, and based on each 3 years' data respectively  相似文献   

8.
A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and generalized Pareto distribution(GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.  相似文献   

9.
利用台湾海峡中部2号大浮标2017年全年的实测波浪资料, 对海浪的基本波要素及其与风的相关性、波谱特性进行统计分析, 得出了重要特征波参数之间的回归关系和适合台湾海峡中部的海浪谱形式。研究结果显示: 1) 台湾海峡中部的常浪向是NE向, 强浪向是NNE向, 月均有效波高的变化范围为0.87~2.98m, 7月波高最小, 12月波高最大, 波周期与波高有着相似的月际变化趋势; 2) 主要波浪类型是以风浪为主的混合浪, 谱型上以单峰为主, 波高与风速整体上呈正相关关系, 大浪主要由台风和强劲的东北季风引起; 3) 波浪的平均周期与大部分特征波周期之间具有良好的线性相关性, NNE、NE方向的波浪有效波高和有效波周期线性相关性较强; 4) 相比于Jonswap谱, 规范谱一是更符合本区域的海浪谱模式, 给出了基于有效波高和谱峰周期拟合的规范谱一形式。这些研究成果可为海洋工程设计和波浪数值模拟提供参考。  相似文献   

10.
The main objective of this paper is to examine the influences of both the principal wave direction and the directional spreading parameter of the wave energy on the wave height evolution of multidirectional irregular waves over an impermeable sloping bottom and to propose an improved wave height distribution model based on an existing classical formula. The numerical model FUNWAVE 2.0, based on a fully nonlinear Boussinesq equation, is employed to simulate the propagation of multidirectional irregular waves over the sloping bottom. Comparisons of wave heights derived from wave trains with various principal wave directions and different directional spreading parameters are conducted. Results show that both the principal wave direction and the wave directional spread have significant influences on the wave height evolution on a varying coastal topography. The shoaling effect for the wave height is obviously weakened with the increase of the principal wave direction and with the decrease of the directional spreading parameter. With the simulated data, the classical Klopman wave height distribution model is improved by considering the influences of both factors. It is found that the improved model performs better in describing the wave height distribution for the multidirectional irregular waves in shallow water.  相似文献   

11.
黄海海浪季节变化的数值模拟研究   总被引:3,自引:2,他引:1  
陈国光  翟方国  李培良  刘晓 《海洋科学》2016,40(11):155-168
利用第三代海浪数值模式SWAN,研究了黄海海浪有效波高的季节变化特征及相关的物理过程。结果表明,在黄海的大部分区域,混合浪有效波高的最大值出现在冬季,而最小值则基本出现在夏季。北黄海北部和山东半岛南岸的近海海域呈现稍微不同的季节变化,有效波高的最大值出现在春季。全年4个季节中混合浪有效波高的空间分布基本一致:均在济州岛西南最大,沿黄海中部区域向北和由中部区域向近岸区域逐渐减小。黄海海浪为风浪占主,涌浪有效波高远小于风浪有效波高。在黄海的大部分区域,白冠耗散和四波非线性相互作用对黄海海浪的季节变化均至关重要;对于外海区域,四波非线性相互作用更为重要,而对于近海区域,白冠耗散则影响更大。本研究旨在研究黄海海浪的季节变化特征及其物理过程,为进一步探讨该海域海浪在其他时间尺度上的变异特征和动力学过程提供研究基础。  相似文献   

12.
南海灾害性波浪基本特征研究   总被引:3,自引:0,他引:3  
本文基于1991-2016年全球卫星高度计融合数据对南海灾害性波浪基本特征进行了分析,根据灾害性波浪诱发天气类型不同,将其分为"台风浪"和"非台风浪"。依此主线,对两类波浪在南海不同海域的特征进行了研究,并提出了用于定量研究两类波浪强度关系的台风浪权重系数(W),得到了两类波浪在南海相对强弱关系的分布规律,量化研究了南海灾害性波浪的特征。本文以卫星高度计波高数据为样本进行了极值分析,得到了南海重现期波浪要素整体分布规律,研究发现W值大小与广义极值曲线类型显著相关。  相似文献   

13.
The effect of directionality on extreme wave design criteria   总被引:1,自引:0,他引:1  
Philip Jonathan  Kevin Ewans   《Ocean Engineering》2007,34(14-15):1977-1994
Sea state design criteria for offshore facilities are frequently provided by direction. For example, it is typical for return-period values of the significant wave height to be specified for each of eight 45° sectors in addition to the omni-directional case. However, it is important that these criteria be consistent so that the probability of exceedance of a given wave height from any direction derived from the directional values is the same as for the omni-directional value. As recently demonstrated by Forristall it is not sufficient simply to scale the directional values so that the value of the wave height from the most severe sector is the same as the omni-directional value.We develop an approach for establishing appropriate directional criteria and an associated omni-directional criterion for a specific location. The inherent directionality of sea states is used to develop a model for the directional dependence of distributions of storm maxima. The directional model is applied to the GOMOS data, and the distributional properties of the 100-year significant wave height are estimated and the implications for design discussed. An objective risk-cost approach is proposed for optimising directional criteria, while preserving overall reliability. Simulation studies are performed, using realistic extreme value assumptions, to quantify the uncertainties.  相似文献   

14.
本文基于SWAN(Simulating Waves Nearshore)模式研究了2001~2016年石岛海浪有效波高的季节和年际变化特征,评估了不同区域风场对其贡献,并探讨了其与ENSO的关系。结果表明,石岛有效波高受黄海季风系统的影响呈现显著的季节变化:12月份最大, 6月份最小, 1%大波有效波高季节变化不显著。石岛有效波高年际变化信号显著,其与风速年际变化之间的关系存在季节性差异:石岛有效波高和石岛、黄海区域平均风速不同月份的年际异常分别在7、10月份相关性较高,而石岛1%大波有效波高和石岛、黄海区域平均1%大风风速不同月份的年际异常则在8月份左右相关性最高。不同区域风场对石岛有效波高场的影响也呈现了季节性差异:夏季,黄海南部区域风场对石岛海浪的贡献较大,而石岛风场的贡献较小;冬季,石岛风场的贡献较大。ENSO(El Ni?o-Southern Oscillation)事件会对石岛有效波高的年际变化产生一定的影响,但影响比较小。本研究旨在对石岛海浪在季节和年际尺度上的变化特征以及风场等影响因素进行研究,对该海域海浪场进行了详细的认识,对了解该海域海浪有重要意义。  相似文献   

15.
本文利用第三代海浪模式(WAVEWATCH III)分析了2002-2011年太平洋风速和海浪场的时空变化特征。首先,使用浮标观测数据对模式模拟的有效波高结果进行验证。结果表明模式可以有效地后报太平洋的有效波高。模式偏差较大的区域为中低纬度地区。随后将太平洋分为多个子区域,分别讨论了其风速和有效波高的时空变化特征。多年平均太平洋风速和有效波高存在类似的纬向分布特征,各子区域之间风速和有效波高的季节变化存在差别。模式刻画的太平洋有效波高年际变化最大的区域为南半球中高纬区域。进一步,我们研究了波浪能量的输入与耗散。相应的源函数项的各区域平均值显示了量化的表面波的变化。最后,对日平均的风速与有效波高值进行功率谱分析寻找序列的显著周期。结果表明有效波高时间变化对应的频谱和风速谱具有一定的差异。  相似文献   

16.
A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the 'Wave Activity Index' (WAI) and the 'Baroclinic Activity Index' (BAI) are computed from simulations of the General Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses indicate that the extremes of WAI and BAI are Weibull distributed, this corresponds to distributions with an upper bound. However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric configurations characteristic of the maxima and minima of WAI and BAI are also examined.  相似文献   

17.
以欧洲中期天气预报中心的23年再分析风场数据为基础,采用HIRHAM风场模式和SWAN海浪模型对南海北部海域的波浪场进行推算,并将南海北部海域的有效波高与厄尔尼诺指数作对比,探究两者的关系,分析结论如下:(1)南海海域波高具有较强的季节性变化特征,冬季波高大于夏季波高;(2)南海北部海域月平均波高与Niño3.4指数呈负相关,大部分海域呈中度相关,台湾和菲律宾之间的部分海域呈高度相关;(3)在强厄尔尼诺年,南海北部海域的有效波高明显偏小,且厄尔尼诺指数变化越大,波高越小;反之,在强拉尼娜年,南海北部海域的有效波高较大。  相似文献   

18.
The three-parameter generalized-extreme-value (GEV) model has been recommended by FEMA [FEMA (Federal Emergency Management Agency of the United States), 2004. Final Draft Guidelines for Coastal Flood Hazard Analysis and Mapping for the Pacific Coast of the United States. http://www.fema.gov/library/viewRecord.do?id=2188] for frequency analysis of annual maximum water levels in the Pacific coast of the United States. Yet, the GEV model's performance in other coastal areas still needs to be evaluated. The GEV model combines three types of probability distributions into one expression. The probability distributions can be defined by one of the three parameters of the GEV model. In this study, annual maximum water levels at nine water-level stations with long history data (more than 70 years) were chosen for analysis in five coastal areas: Pacific, Northeast Atlantic, East Atlantic, Southeast Atlantic, and Gulf of Mexico coasts. Parameters of the GEV model are estimated by the maximum likelihood estimation (MLE) method. Results indicate that probability distributions are characterized by the GEV Type III model at stations in the Pacific, Northeast, and East Atlantic coastal areas, while they are described by GEV Type II in stations of the Southeast Atlantic and Gulf of Mexico coastal areas. GEV model predictions of extreme water levels show good correlation to observations with correlation coefficients of 0.89 to 0.99. For predictions of 10% annual maximum water levels, the GEV model predictions are very good with errors equal to or less than 5% for all nine stations. Comparison of observations and GEV model estimations of annual maximum water levels for the longest recorded return periods, close to 100 years, revealed errors equal to or less than 5% for stations in the Pacific and Northeast Atlantic coastal areas. However, the errors range from 10% to 28% for other stations located in the East and Southeast Atlantic coasts as well as Gulf of Mexico coastal areas. Findings from this study suggest caution regarding the magnitudes of errors in applying the GEV model to the East and Southeast Atlantic coasts and Gulf of Mexico coast for estimating 100-year annual maximum water levels for coastal flood analysis.  相似文献   

19.
通过分析实验室风浪观测结果研究非线性效应对波面极大值和极小值分布的影响。波面极大值和极小值累积概率的差异表明 ,与线性理论相比 ,波面极小值在平均波面以下的位置偏高。对实验结果的进一步分析表明 ,非线性效应使波面极大值在平均波面以上总概率高于线性理论结果 ,而概率密度峰值处波面极大值高度略低于线性理论结果。波面极小值在平均波面以上各位置出现的概率均高于线性理论结果 ,在平均波面以下的较低位置 ,波面极小值出现概率明显低于线性理论结果。  相似文献   

20.
渤海重现期波高的数值计算   总被引:2,自引:0,他引:2  
利用RAMS大气模式给出的20年风场资料,利用SWAN近海波浪模式对渤海海域的波浪进行了20 a数值计算.通过与一般过程和大风过程的实测资料的对比后发现.波浪模拟值与实潮值符合地较好,SWAN模式适合渤海海域波浪的计算。通过分析发现.辽东湾常浪向为SSW。强浪向为SSW;渤海中部常浪向为S,强浪向为NE;渤海海峡常浪向为NNW,强浪向为NNW;莱州湾常浪向为S,强浪向为NNE;渤海湾常浪向为S.强浪向为NE。渤中偏东南海域(38°~39°N,119.5°~120.5°E)多年一遇有效波高最大.其中百年一遇有效波高最大值达到6.7m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号