首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the tsunamis resulting from a submarine mass failure such as slides and slumps triggered by earthquakes or other environmental effects, which is settled at the bottom of the north eastern Sea of Marmara are examined in one sample region. As the solution method, one hybrid method is developed. The main objective of this method is to combine an analytical solution presenting near-field tsunami amplitudes above the submarine mass failure with a numerical solution indicating the tsunami amplitudes in the coastal regions. For this purpose, one common linear boundary between analytical and numerical solution domains is defined. Movements of Submarine Mass Failures (SMF) are modeled using one simple kinematics source model and the amplitudes of the tsunamis at the region that are closer to the landslide are computed by using the analytical method. SMF is modeled approximately from the bottom geometry, and an average depth is used. Scenarios of SMF are established depending on the velocities and thicknesses of the failure, and near-field tsunami amplitudes are obtained in the open sea during the source time. After the source times, the solutions are found in the numerical region using TELEMAC-2D software system with the mentioned boundary above. In this boundary, the output of the analytical solutions is taken as the boundary conditions or the disturbances for the numerical method. With these disturbances, the numerical method is performed and the amplitudes are calculated in the coastal area. The generation, propagation and coastal amplifications of the tsunamis are illustrated at some certain points and regions both in the open sea and near the coast line. The results have been visualized and discussed.  相似文献   

2.
A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event that occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive), the nonlinear Boussinesq, and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.  相似文献   

3.
A numerical study which takes into account wave dispersion effects has been carried out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami event that occurred on December 26, 2004. Three different numerical models have been used: the nonlinear shallow water (nondispersive), the nonlinear Boussinesq, and the full Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical model results are compared against each other. General features of the wave propagation agreed very well in all numerical studies. However some important differences are observed in the wave patterns, i.e., the development in time of the wave front is shown to be strongly connected to the dispersion effects. Discussions and conclusions are made about the spatial and temporal distribution of the free surface reaffirming that the dispersion mechanism is important for tsunami hazard mitigation.  相似文献   

4.
1.IntroductionIn mathematics and physics,a soliton is a self-reinforcing solitary wave caused by nonlinear ef-fectsinthe medium.Solitons are found in many physical phenomena(Chou and Shih,1996;Chouand Quyang,1999;Chouet al.,2003;Chenet al.,2004;Wang,2004;…  相似文献   

5.
This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating nearshore wave processes. The governing equations are a depth-integrated vertical momentum equation and the shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A special type of finite element method, which was previously developed for a well-validated depth-integrated free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The comparison shows that the developed wave model without the use of any empirical parameters is capable of accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up of nonlinear dispersive waves and transformation and inundation of tsunami waves.  相似文献   

6.
非线性波传播的新型数值模拟模型及其实验验证   总被引:3,自引:4,他引:3  
以一种新型的Boussinesq型方程为控制方程组,采用五阶Runge-Kutta-England格式离散时间积分,采用七点差分格式离散空间导数,并通过采用恰当的出流边界条件,从而建立了非线性波传播的新型数值模拟模型.通过对均匀水深水域内波浪传播的数值模拟说明,模型能较好地模拟大水深水域和强非线性波的传播.通过设置不同的入射波参数来进行潜堤地形上波浪传播的物理模型实验,并将数值解与物理模型实验结果进行了比较.  相似文献   

7.
2016年全球地震海啸监测预警与数值模拟研究   总被引:2,自引:0,他引:2  
回顾了国家海洋环境预报中心(国家海洋局海啸预警中心)2016年全球地震海啸监测预警的总体状况, 并基于震源生成模型和海啸传播数值模型的计算结果详细介绍了几次主要海啸事件及其影响特性。2016年全年国家海洋环境预报中心总共对全球6.5级(中国近海5.5级)以上海底地震响应了45次,发布海啸信息81期, 没有发生对我国有明显影响的海啸。结合精细化的数值模拟结果和浮标监测数据,重点介绍了苏门达腊7.8级地震海啸、厄瓜多尔7.8级地震海啸、新西兰7.1级和7.8级地震海啸, 以及所罗门7.8级地震海啸的波动特征和传播规律, 模拟结果与实测海啸波符合较好。针对厄瓜多尔7.8级地震海啸事件, 本文比较分析了均匀断层模型和多源有限断层模型对模拟结果的影响; 针对新西兰7.1级地震海啸, 探讨了色散效应对海啸波在大水深、远距离传播过程的影响规律。  相似文献   

8.
In this paper, a modified leap-frog finite difference (FD) scheme is developed to solve Non linear Shallow Water Equations (NSWE). By adjusting the FD mesh system and modifying the leap-frog algorithm, numerical dispersion is manipulated to mimic physical frequency dispersion for water wave propagation. The resulting numerical scheme is suitable for weakly nonlinear and weakly dispersive waves propagating over a slowly varying water depth. Numerical studies demonstrate that the results of the new numerical scheme agree well with those obtained by directly solving Boussinesq-type models for both long distance propagation, shoaling and re-fraction over a slowly varying bathymetry. Most importantly, the new algorithm is much more computationally efficient than existing Boussinesq-type models, making it an excellent alternative tool for simulating tsunami waves when the frequency dispersion needs to be considered.  相似文献   

9.
At 13:46 on March 11, 2011(Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.  相似文献   

10.
浅水方程被广泛应用于海啸预警报业务及研究,而针对线性浅水方程与非线性浅水方程在不同海区水深地形条件下的适用范围、计算效率问题是海啸研究人员急需了解的。本文应用基于浅水方程的海啸数值预报模型就海啸波在南海、东海传播的线性、非线性特征以及陆架对其传播之影响进行了数值分析研究。海啸波在深水的传播表征为强线性特征,此时线性系统对海啸波幅的模拟计算具有较高的精度和效率,而弱的非线性特征及弱的色散特征对海啸波幅的预报影响甚微,可以忽略不计。海啸波传播至浅水大陆架后受海底坡度变化、海底粗糙度等因素影响,波动的非线性效应迅速传播、积累,与线性浅水方程计算的海啸波相比表现出较大差异,主要表现为:在南海区,水深小于100m时,海啸波首波以后的系列波动非线性特征比较明显,两者波幅差别较大,但首波波幅的区别不大,因此对于该区域在不考虑海啸爬高的情况下,应用线性系统计算得到的海啸波幅也可满足海啸预警报的要求;在东海区由于陆架影响,海啸波非线性特征明显增强,水深小于100m区域,首波及其后系列波波幅均差异较大,故在该区域必须考虑海啸波非线性作用。本文就底摩擦项对海啸波首波波幅的影响进行了数值对比分析,结果表明:底摩擦作用对海啸波首波波幅影响仅作用于小于100m水深。最后,该文通过敏感性试验,初步分析了陆架宽度及陆架边缘深度对海啸波波幅的影响,得出海啸波经陆架传播共振、变形后,海啸波幅的放大或减小与陆架的宽度及陆架边缘水深有关。  相似文献   

11.
2015年9月16日22时54分(当地时间)智利中部近岸发生Mw8.3级地震,震源深度25 km。同时,强震的破裂区长200 km,宽100 km,随之产生了中等强度的越洋海啸。海啸影响了智利沿岸近700 km的区域,局部地区监测到近5 m的海啸波幅和超过13 m的海啸爬坡高度。太平洋区域的40多个海啸浮标及200多个近岸潮位观测站详细记录了此次海啸的越洋传播过程,为详细研究此次海啸近场及远场传播及演化规律提供了珍贵的数据。本文选择有限断层模型和自适应网格海啸数值模型建立了既可以兼顾越洋海啸的计算效率又可以实现近场海啸精细化模拟的高分辨率海啸模型。模拟对比分析了海啸的越洋传播特征,结果表明采用所建立的模型可以较好地再现远场及近场海啸特征,特别是对近场海啸的模拟结果非常理想。表明有限断层可以较好地约束近场、特别是局部区域的破裂特征,可为海啸预警提供更加精确的震源信息,结合高分辨率的海啸数值预报模式实现海啸传播特征的精细化预报。本文结合观测数据与数值模拟结果初步分析了海啸波的频散特征及其对模型结果的影响。同时对观测中典型的海啸波特征进行的简要的总结。谱分析结果表明海啸波的能量主要分布在10~50 min周期域内。这些波特征提取是现行海啸预警信息中未涉及,但又十分重要的预警参数。进一步对这些波动特征的详细研究将为海啸预警信息及预警产品的完善提供技术支撑。  相似文献   

12.
Solitary waves have been commonly used as an initial condition in the experimental and numerical modelling of tsunamis for decades. However, the main component of a tsunami waves acts at completely different spatial and temporal scales than solitary waves. Thus, use of solitary waves as approximation of a tsunami wave may not yield realistic model results, especially in the coastal region where the shoaling effect restrains the development of the tsunami wave. Alternatively, N-shaped waves may be used to give a more realistic approximation of the tsunami wave profile. Based on the superposition of the sech2(*) waves, the observed tsunami wave profile could be approximated with the N-shaped wave method, and this paper presents numerical simulation results based on the tsunami-like wave generated based on the observed tsunami wave profile measured in the Tohoku tsunami. This tsunami-like wave was numerically generated with an internal wave source method based on the two-phase incompressible flow model with a Volume of Fluid (VOF) method to capture the free surface, and a finite volume scheme was used to solve all the governing equations. The model is first validated for the case of a solitary wave propagating within a straight channel, by comparing its analytical solutions to model results. Further, model comparisons between the solitary and tsunami-like wave are then made for (a) the simulation of wave run-up on shore and (b) wave transport over breakwater. Comparisons show that use of these largely different waveform shapes as inputs produces significant differences in overall wave evolution, hydrodynamic load characteristics as well as velocity and vortex fields. Further, it was found that the solitary wave uses underestimated the total energy and hence underestimated the run-up distance.  相似文献   

13.
Scenarios of local tsunamis in the China Seas by Boussinesq model   总被引:1,自引:0,他引:1  
The Okinawa Trench in the East China Sea and the Manila Trench in the South China Sea are considered to be the regions with high risk of potential tsunamis induced by submarine earthquakes. Tsunami waves will impact the southeast coast of China if tsunamis occur in these areas. In this paper, the horizontal two-dimensional Boussinesq model is used to simulate tsunami generation, propagation, and runnp in a domain with complex geometrical boundaries. The temporary varying bottom boundary condition is adopted to describe the initial tsunami waves motivated by the submarine faults. The Indian Ocean tsunami is simulated by the numerical model as a validation case. The time series of water elevation and runup on the beach are compared with the measured data from field survey. The agreements indicate that the Boussinesq model can be used to simulate tsunamis and predict the waveform and runup. Then, the hypothetical tsunamis in the Okinawa Trench and the Manila Trench are simulated by the numerical model. The arrival time and maximum wave height near coastal cities are predicted by the model. It turns out that the leading depression N-wave occurs when the tsunami propagates in the continental shelf from the Okinawa Trench. The scenarios of the tsunami in the Manila Trench demonstrate significant effects on the coastal area around the South China Sea.  相似文献   

14.
A set of weakly dispersive Boussinesq-type equations, derived to include viscosity and vorticity terms in a physically consistent manner, is presented in conservative form. The model includes the approximate effects of bottom-induced turbulence, in a depth-integrated sense, as a second-order correction. Associated with this turbulence, vertical and horizontal rotational effects are captured. While the turbulence and horizontal vorticity models are simplified, a model with known physical limitations has been derived that includes the quadratic bottom friction term commonly added in an ad hoc manner to the inviscid equations. An interesting result of this derivation is that one should take care when adding such ad hoc models; it is clear from this exercise that (1) it is not necessary to do so – the terms can be included through a consistent derivation from the viscous primitive equations – and (2) one cannot properly add the quadratic bottom friction term without also adding a number of additional terms in the integrated governing equations. To solve these equations numerically, a highly accurate and stable model is developed. The numerical method uses a fourth-order MUSCL-TVD scheme to solve the leading order (shallow water) terms. For the dispersive terms, a cell averaged finite volume method is implemented. To verify the derived equations and the numerical model, four cases of verifications are given. First, solitary wave propagation is examined as a basic, yet fundamental, test of the models ability to predict dispersive and nonlinear wave propagation with minimal numerical error. Vertical velocity distributions of spatially uniform flows are compared with existing theory to investigate the effects of the newly included horizontal vorticity terms. Other test cases include comparisons with experiments that generate strong vorticity by the change of bottom bathymetry as well as by tidal jets through inlet structures. Very reasonable agreements are observed for the four cases, and the results provide some information as to the importance of dispersion and horizontal vorticity.  相似文献   

15.
张洪生  冯文静  商辉 《海洋学报》2007,29(5):161-173
以一种新型的含变换速度变量的Boussinesq型方程为控制方程组,采用五阶Runge-Kutta-England格式离散时间积分,采用七点差分格式离散空间导数,并采用恰当的出流边界条件,从而建立了非线性波传播的新型数值模拟模型.对均匀水深水域内波浪传播的数值模拟,说明在引入变换速度后进一步增大了模型的水深适用范围.对潜堤地形上波浪传播的数值模拟说明,在引入变换速度后进一步提高了模型的数值模拟精度.  相似文献   

16.
The applicability of three different wave-propagation models in nonlinear dispersive wave fields has been investigated. The numerical models tested here are based on three different wave theories: a fully nonlinear potential theory, a Stokes second-order theory, and a Boussinesq-type theory with an improved dispersion relation. Physical experiments and computations were conducted for wave evolutions during passage over a submerged shelf under various wave conditions. As expected, the fully nonlinear solutions agree better with the measurements than do the other solutions. Although the second-order solution has sufficient accuracy for smaller-amplitude wave cases, the truncation after the third harmonics causes significant discrepancies in wave form for larger waves. In addition, the second-order model markedly overestimates the first- and second-harmonic amplitudes in transmitted waves. The Boussinesq model provides excellent predictions of wave profile over the shelf even in larger wave cases. However, this model also overestimates the magnitudes of several higher harmonics in transmitted waves. These facts may indicate that energy transfer from bound components into free waves in these higher harmonics cannot be accurately evaluated by the Boussinesq-type equations.  相似文献   

17.
1994年发生在台湾海峡的一次地震海啸的数值模拟   总被引:19,自引:0,他引:19  
建立了一个地震海啸数值模式,模式包含越洋海啸传播部分和近岸海啸变形部分,在越洋海啸传播部分中采用线性浅水方程,使用蛙跃格式求解,并且选择合适的空间步长与时间步长,使差分格式中产生的数值频散与包辛尼斯克方程中的物理频散一致,这样在不影响海啸数值计算精度的前提下,节省了计算机的机时与内存.在近岸海啸变形部分的计算中,考虑了非线性对流项与海底摩擦项.同时该模式采用了多重网格嵌套技术,提高了所关心地区的计算精度.利用这个地震海啸模式模拟了1994年发生在台湾海峡的一次地震海啸,结果与观测记录较吻合.这个模型已用于我国沿海核电站可能最大地震海啸的数值计算.  相似文献   

18.
The generation and propagation of surface waves resulting from suddenly created disturbances over water surfaces is investigated. The initial boundary conditions defining the disturbance are given either by a velocity of the free surface, an initial elevation of the free surface or a pressure impulsively applied on the free surface. It is shown that the corresponding three forms of solutions are related by a simple time derivative. Linear solutions are obtained in the cases where the wave motion is assumed to be nondispersive, mildly dispersive and fully dispersive, as well as in the case where the motion is given by the method of stationary phase. Criteria are established to indicate the limit of validity of each method.  相似文献   

19.
双曲余弦海脊上海啸俘获波的解析与数值研究   总被引:4,自引:3,他引:1  
海啸能被大洋海脊引导以俘获波的形式沿其传播上万千米,且因其特殊的运动方式,携带巨大能量影响远场地区的港口,严重威胁海岸安全。本文首先基于线性浅水方程,推导了双曲余弦平方海脊上俘获波的波面解,其为μ阶ν次的连带勒让德函数的第一类解和第二类解的组合。进一步推导出其对应的频散关系,其中对于确定的频率ω,存在无穷多个波数ky与之对应。采用MIKE21-BW模型,模拟了产生于海脊脊顶处的海啸在理想双曲余弦平方海脊上的传播变形过程。结果表明,小部分能量以自由先驱波进行传播,海啸波的波能大部分被海脊俘获。海脊俘获波沿着海脊方向为行进波,随着海啸波传播时间的增加,波浪在沿着海脊方向的延展范围也逐渐增大,波高逐渐减小、波的个数逐渐增加。俘获波能量主要由不同频率以相同速度传播的具有孤立波特性的波浪成分和能量主要集中在特定频率范围内的波浪成分组成。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号