首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘诚  梁燕  彭石  侯堋 《海洋学报》2017,39(1):1-10
本文建立曲线坐标系下的双曲型缓坡方程波浪模型和考虑波浪辐射应力影响的深度平均2D潮流数学模型,首次研究了磨刀门河口2011年地形条件下的枯季波生流场。受波浪作用影响,落潮阶段,波浪作用方向与流向相反,在波浪顶托效应下拦门沙沙脊及外坡处流速普遍减小,形成两个主要回流区,口门外东西两侧浅滩处流速也减小,东西两汊及横洲深槽流速增大;涨潮阶段,波浪作用方向与流向相同,拦门沙沙脊及外坡处流速增大,沙脊处出现冲越流,口门两侧浅滩处流速增大,横洲深槽流速减小。  相似文献   

2.
Abstract

Maximum tsunami amplitudes that will result from major earthquakes in the Pacific Northwest region of North America are considered. The modeled region encompasses the coastlines of British Columbia in Canada, and Washington and Oregon in the United States. Three separate models were developed for the outer coast and one model for the system consisting of the Strait of Georgia, Juan de Fuca Strait, and Puget Sound (GFP model) (Part 2). Three different source areas were considered for the outer coast models and the resulting tsunami was propagated to the entrance of Juan de Fuca Strait. Using the output from the other models, the GFP model was run. The results showed that large tsunami amplitudes can occur on the outer coast, whereas inside the GFP system, unless the earthquake occurs in the system itself, no major tsunami will result (Part 2).  相似文献   

3.
This study describes the transport of salt and suspended sediment in a curving reach of a shallow mesotidal coastal plain estuary. Circulation data revealed a subtidal upstream bottom flow during neap tide, indicating the presence of a gravitational circulation mode throughout the channel. During spring tide, landward bottom flow weakened considerably at the upstream end of the channel and changed to seaward in the middle and downstream areas of the reach, suggesting the importance of tidal pumping. Salt flux near-bottom was landward at both ends of the channel during neap tide. At spring, however, the salt flux diverged along the bottom of the thalweg suggesting that tidal pumping caused a transfer of salt vertically and laterally into the intertidal zone. Thus, landward flux of salt is maintained even in the presence of subtidal seaward flow along the bottom at the downstream end of the channel.Landward bottom stress is greater than seaward stress, preferentially transporting suspended sediments upstream. Compared with salt, however, the weight of the suspended sediments causes less upward transfer of sediments into the intertidal zone. Flood flow carried more suspended sediments landward at the upstream end compared with the downstream end. We speculate that secondary flow in the curving channel picks up increasing amounts of suspended sediments along the sides during flood and adds them to the axial flow in the thalweg. Since the landward flow along the bottom of the thalweg weakens and even reverses during spring tide, there appears to be a complex re-circulation system for sediments re-suspended in curving channels that complicates the picture of a net transport of sediments landward.  相似文献   

4.
Estimates of area-averaged tidal bottom stress are made for four channel segments of the Great Bay Estuary, N.H. Current and sealevel measurements are used to estimate acceleration and pressure gradient terms in the equation of motion, while the equation of motion itself is used to infer the remaining stress term. Dynamic terms, bottom stress values, friction coefficients and energy dissipation rates are estimated for each site. The analysis shows that while throughout the estuary the principal force balance is between the frictional stress and the pressure gradient forcing, RMS values of total bottom stress range from 2·67 to 10·38 Nm?2 and friction coefficients vary from 0·015 to 0·054. Both stress and energy dissipation are largest in the seaward portion of the estuary with an order of magnitude decrease in dissipation at the most inland site.These distributions of stress and energy dissipation are consistent with cotidal charts of the principal semi-diurnal tidal constituent (M2) which indicate that the estuary is composed of a highly dissipative more progressive tidal wave regime seaward and a less dissipative standing wave regime landward.  相似文献   

5.
Seston transport and deposition in Pelorus sound,south Island,New Zealand   总被引:2,自引:2,他引:0  
Transport of seston (suspended sediment) in Pelorus Sound is controlled by tides and freshwater inflow. During high freshwater inflow, a moderately stratified estuarine circulation may be superimposed on the tidal circulation, but the latter dominates and transports seston seawards and landwards with the ebb and flood phases respectively. With extreme freshwater inflow, the estuarine circulation gains impetus and most seston is rapidly transported seaward in the low saline surface layer.

Irrespective of circulation there is a persistent trend in seston concentrations. Highest values occur at the sound's head because of the influence of nearby Pelorus and Kaituna Rivers and because of resuspension of bottom sediment by strong tidal currents. Seston concentrations wane along the sound until near the entrance, where values increase as a result of greater production of biogenic seston and because additional seston is brought in from Cook Strait with the flood tide. This trend parallels variability in the thicknesses of muddy bottom sediments. Muds are thick at the head where an extensive delta extends from the river mouths; muds gradually thin seaward and then thicken markedly in the vicinity of the sound entrance.

Seston weight and composition patterns and 3.5 kHz seismic profiles indicate Pelorus Sound acts as a double‐ended sediment trap. The upper reaches receive and retain river‐derived seston, whereas the sound entrance traps seston derived from Cook Strait. This situation appears to hold for both high and extremely high influxes of sediment.  相似文献   

6.
Data collected during 7 years of seasonal surveys are used to investigate the distribution of phytoplankton biomass within the estuarine waters of the Strait of Georgia and Juan de Fuca Strait. Variability of the chlorophyll distribution is examined in relation to the density stratification, light availability and nutrient concentration. In the Strait of Georgia, both the horizontal and vertical distribution of chlorophyll are found to be linked to the presence of a near-surface layer of increased density stratification. Despite important year-to-year variability, the seasonal cycle of chlorophyll in the Strait of Georgia is dominated every year by relatively large near-surface concentrations in the spring that are linked to the seasonal increase in solar radiation onto the stratified near-surface layer. In the vertical, a sub-surface peak is observed around 10 m depth, corresponding to the depth of maximum water column stability. Nutrients within the euphotic zone are in general abundant, with the exception of the Strait of Georgia in summer where phytoplankton growth is potentially limited by low nitrate concentration near the surface. The depth of the euphotic zone is estimated along the thalweg of the estuary from transmissometer profiles. It appears to vary relatively little within the estuary from a minimum of 20 m in spring, near the mouth of the Fraser River, to an autumnal maximum of about 30 m in the northern Strait of Georgia. Finally, the estimated self-shading contribution to light attenuation is shown to be generally significant (5–10%) in the surface waters of the Strait of Georgia, during spring and summer, reaching values as high as 35% during the spring bloom.  相似文献   

7.
基于非结构有限体积法海洋模型FVCOM(Finite-Volume Community Ocean Model), 建立了马六甲海峡及其毗邻海域高分辨率水动力数值模型, 研究了风和潮流作用下的余环流结构以及水体输运特征。结果表明, 马六甲海峡航道中央潮流运动以往复流为主, 边缘存在旋转流; 主要研究区域内落潮流速略大于涨潮流速, 东南窄道处流速最大; 因峡道束窄变浅, 在涨落潮过程中潮流发生汇聚与分离; 主要研究区域东南段存在3个显著的潮致余环流; 东北季风驱动时模型响应为海峡海流整体向西北方向流动, 西南季风时反之; 季风期间潮致表层余环流结构被破坏, 但底层余流仍存在水平环流结构, 且随着风速增加, 底层余环流的数目、大小、形状、位置均会产生变化; 季风过渡期余环流结构也会发生部分改变, 尤其是小潮期间风场影响效果显著。  相似文献   

8.
李为  时钟  浦祥  胡国栋 《海洋与湖沼》2017,48(4):682-694
基于ADCP走航观测得到长江河口北槽弯道附近3个横向断面(AD3、AD5和AD6)的流速资料,采用涡度方法,本文计算、分析了弯道环流与混合在垂直横向上的时空分布、影响因素及其重要性。3个横向断面上均存在由不规则界面分开的二层结构的横向环流。半拉格朗日余流的计算结果显示:(1)小潮期间,AD3、AD5和AD6断面呈现表层向海、底层向陆的纵向环状半拉格朗日余流;大潮期间,呈现表、底层均向海的纵向半拉格朗日余流;(2)小潮期间,AD3断面呈现表层向北导堤、底层向南导堤的横向环状半拉格朗日余流;大潮期间,AD3断面中间区域呈现表层向北导堤、底层向南导堤的、而断面两端区域则呈现表层向南导堤、底层向北导堤的横向环状半拉格朗日余流;(3)小、大潮期间,横向断面AD5和AD6均呈现表层向北导堤、底层向南导堤的横向环状半拉格朗日余流;(4)"纵向半拉格朗日余流"在–0.2—0.7m/s;横向半拉格朗日余流"在–0.15—0.2m/s;(5)纵向半拉格朗日余流在横向上有明显变化。对弯道环流的进一步分析表明:(1)斜压梯度、内部摩擦致混合和底部摩擦致混合这三项各自的纵向分量是驱动纵向环流形成的主要因素,"纵向动量的横向重新分布项"次之,离心力和地转的影响可忽略;(2)横向斜压梯度和内部摩擦致混合项是驱动横向环流形成的主要因素,离心力、地转和底部摩擦致混合次之;(3)横向环流可能通过"纵向动量的横向重新分布项"减弱纵向动量,从而可能减弱纵向环流。  相似文献   

9.
Five vertical profiles of silver (Ag) in the subarctic northeast Pacific are presented. Dissolved (< 0.2 μm) Ag concentrations within the surface mixed layer range from 6–25 pM, with the highest observed values at the most coastal site. Elevated Ag concentrations at this station are most likely attributable to the estuarine circulation in the Juan de Fuca Strait. One open-ocean station (P20) exhibited a strong surface Ag maximum. The station was located at the edge of a Haida eddy which raises the possibility that such eddies transport Ag seaward from the coastal zone. Ag concentrations in the deep waters ranged from 60–80 pM. These measurements are consistent with other recent Ag data collected in the Pacific. Ag profiles throughout the Pacific Ocean yield a strong positive correlation between Ag concentration and dissolved silicic acid concentration. However, Ag is depleted relative to silicic acid at intermediate depths where dissolved O2 concentrations are low, implying a possible removal of Ag from oxygen-depleted waters by scavenging and/or precipitation.  相似文献   

10.
近20 a来,受高强度人类活动影响,珠江伶仃洋滩槽已发生远超自然过程的异变,其河口动力结构必然发生响应,影响物质输运过程。本研究利用三维水动力数值模型,探讨了伶仃洋河口小潮期余环流结构的变化特征及原因。结果表明:近20 a来伶仃洋底层余流强度提高,沿深槽上溯时向中滩偏转,易引起泥沙汇聚于此。中滩存在表层向西,底层向东的横向余环流结构,主要由非线性对流项和科氏力项驱动。中滩大规模采砂后引起对流项变化,造成余环流结构东移,表、底层余流增强,可加快表底层物质交换。西槽内存在表层向海、底层向陆的纵向余环流结构,主要由正压和斜压梯度力驱动。受浚深影响,向陆斜压梯度力和非线性对流项均增强,引起表层余流减小22%,而底层增大24%,这将削弱小潮期西槽内水体交换能力,即减慢物质输出,易造成西槽淤积、水环境恶化等影响。研究成果对研究人类活动干扰下的河口余环流结构及物质输运响应具有一定借鉴意义。  相似文献   

11.
The exchange flow structure was examined in the North Passage of Changjiang River Estuary, where a deep waterway project (DWP) was carried out to improve the navigability. Before the construction of the DWP, the friction effect played a significant role in shaping the transverse structure of the exchange flow. The turbulent eddy viscosity generated near the seabed can be transferred to the upper water column, which facilitated vertical momentum exchange. As a result, the landward inflow extended to –2 m below the water surface and the seaward outflow was concentrated on the shallow shoal on the southern side of the cross section. After the construction of the DWP, the turbulent mixing was suppressed as a result of density stratification. The friction felt by the water was constrained in the lower half of the water column and the vertical momentum exchange was reduced. Meanwhile, the channel became dynamically narrowed with a Kelvin number of 0.52. Therefore, the Coriolis played a minor role in shaping the transverse structure of the exchange flow. As a consequence, the exchange flow featured a vertically-sheared pattern, with outflow at the surface and inflow underneath. Additionally, the gravitational circulation was enhanced due to increase in along-channel density gradient and stratification. The exchange flow components associated with the lateral processes (residual currents induced by eddy viscosity-shear covariance and lateral advective acceleration) were reduced, which suggests that lateral processes played a minor role in modifying the along-channel dynamics when the estuary becomes dynamically-narrowed.  相似文献   

12.
Internal tidal currents and associated water-mass displacements were investigated during multiple cruises in the Kaoping Submarine Canyon off southwestern Taiwan. Observations from both moored and shipboard Acoustic Doppler Current Profilers and hydrographic casts were conducted along the canyon. The velocity data showed that in the lower layer the major axis of the tidal currents aligned with the orientation of the canyon, and currents moved up-canyon during flood and down-canyon during ebb. The vertical-phase shift and amplitude of the currents indicated that the semidiurnal internal tide dominated with intensity increasing with depth toward the canyon head. Tidal energy was channeled from the shelf landward with a beamlike internal wave, guided by bottom topography. The estimated phase velocity was 1.4–1.7 m s−1, based on normal mode analysis and the phase lag between sampling stations. Empirical orthogonal function analysis of hydrographic profiles confirmed that the first mode (M2 internal tide) explained 70% of the total variance. The strong convergence of internal tidal currents near the canyon head during flood may play an important role in the daily migration of cherry shrimps, which burrow along the canyon wall.  相似文献   

13.
Four bottom-mounted instrument-equipped tripods were deployed at two sections spanning the region characterized by severe sedimentation rates in the Deepwater Navigation Channel (DNC) along the North Passage of Changjiang Estuary in order to observe currents, near-bed suspended sediment, and salinity. Seaward residual currents predominated in the up-estuary section. In contrast, a classical two-layered estuarine circulation pattern occurred in the down-estuary section. Flow moved seaward in the upper layer and a heavier inflow, driven by the salinity gradient, moved landward in the lower layer. The near-bed residual currents in the up-estuary section and the down-estuary section acted in opposing directions, which implies that the region is a convergence zone of near-bed residual currents that trap sediment at the bottom. The maximum salinity gradient at the maximum flood current indicates the presence of a strong front that induces sediment trapping and associated near-bottom convergence of sediment, which explains the high sedimentation rates in this section of the estuary.  相似文献   

14.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

15.
基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟   总被引:1,自引:0,他引:1  
基于FVCOM海洋数值模式,采用非结构的三角形网格和有限体积法,建立了泉州湾海域高分辨率(26 m)的三维潮汐、潮流数值模型。模拟结果同2个验潮站和3个连续测流站的观测资料符合良好,较好地反映了泉州湾内潮汐、潮流运动的变化状况和分布特征,给出了M2、S2、K1、O1 4个主要分潮的同潮图、表层潮流椭圆分布,以及模拟区域内最大可能潮差、表层最大可能潮流流速和潮余流分布。分析表明,4个分潮的最大潮汐振幅和迟角差分别为219 cm和19°,85 cm和25°,26 cm和12°,26 cm和9°;石湖港以东海域的潮波为逆时针旋转的驻波,以西海域为前进波;最大可能潮差由湾口的8.0m向湾内增加至8.8 m。湾内潮流类型为规则半日潮流,落潮最大流速大于涨潮最大流速,北乌礁水道为强流区,表层最大可能潮流流速为2.4 m/s;湾口潮流运动以逆时针方向的旋转流形式为主,湾内的潮流运动以往复流形式为主,长轴走向主要沿着水道方向,与等深线和海岸线平行;四个分潮流表层最大流速分别为1.4 m/s,0.58 m/s,0.12 m/s,0.10 m/s。余流流速大小与潮流强弱有密切的联系,表、中、底层最大余流流速分别为26 cm/s,20 cm/s,16 cm/s,三者在水平方向基本呈北进南出的分布形态。  相似文献   

16.
观测红树林潮滩在波浪和潮流作用下的近底层垂向剖面悬沙浓度变化过程, 对理解海岸带植被的消能促淤机制和滨海湿地生态修复工程有着重要作用。本文以北部湾七星岛岛尾桐花树红树林潮滩为例, 基于剖面流速仪HR、声学多普勒单点流速仪ADV、浪潮仪T-wave及剖面浊度仪ASM, 获取了研究区域2019年夏季大潮连续3天的水文数据, 同时结合桐花树典型植株实测参数, 分析了潮周期内红树林潮滩近底层垂向剖面悬沙响应波浪、潮流作用及桐花树空间结构的运动过程。结果表明: 1) 桐花树潮滩近底层悬沙浓度和悬沙通量具有涨潮明显大于落潮的潮汐不对称现象, 剖面垂向高悬沙浓度区域在涨潮初期—涨急由距底部0.1~0.37m转变为距底部0.5~0.67m, 落急—落潮末期则由上部转变为下部; 2) 潮周期内悬沙起动和再悬浮阶段发生在以波浪作用主导的涨潮初期和落潮末期, 平流和沉降发生在以潮流作用为主的涨急至落急整个阶段; 3) 涨潮阶段桐花树冠层的茂密枝叶通过减缓流速拦截多于冠层上部40%以上的悬沙, 落潮水体则挟沙自陆向海经过桐花树群落, 使得悬沙浓度下降超过71%。该不对称涨、落潮动力沉积机制有利于悬沙向岸输运, 促进潮滩扩张过程。  相似文献   

17.
A vertically integrated two‐dimensional (2‐D) and a five‐layer three‐dimensional (3‐D) numerical models were developed to compute the tides in the Gulf of Suez, Egypt. The computational grid used to schematize the Gulf has a horizontal resolution of 3 × 3 km and consists of a lattice of 23 × 100 points in the 2‐D model and five such lattices in the 3‐D model. Both 2‐D and 3‐D simulations clearly revealed the Kelvin wave nature of the tide with partial reflection. The M2 simulations also showed a strong tidal signature in the southern sector as compared to the northern part. For the 3‐D simulations, the horizontal and vertical eddy viscosity coefficients and the coefficient of bottom friction were respectively set to 3 × 106 cm2/s, 200 cm2/s, and 0.001. The tidal range decreases from the entrance of the Gulf of Suez toward the Bank of Tor where it reaches a small value and then increases again to about 1.5 m at Suez. A difference of six hours exists between the times of high water at the southern and northern ends of the Gulf. Quantitatively the agreement between the observed and computed tide is better in the 2‐D simulation than in the 3‐D simulation. However, the counterclockwise gyres in the top three layers of the 3‐D model (upper 30 m) during slack water following the flood tide do not appear in the 2‐D simulation.  相似文献   

18.
南海北部陆架陆坡区海流观测研究   总被引:3,自引:0,他引:3  
针对2006-2009年期间,南海北部陆架陆坡区3个站ADCP海流连续观测资料,采用功率谱分析、潮流调和分析方法,重点分析了陆架陆坡区100 m,200 m和1 200 m水深海域海流的垂向结构,探讨了环流的季节变化和空间分布特征,特别讨论了南海暖流和北陆坡流的时空变化特征。结果表明,陆架陆坡区潮流类型属于不规则日潮,深水站点中层表现为正规全日潮类型,垂向为"三层结构",甚至更加复杂。O1,K1,M2,S2等分潮总体上为顺时针旋转,在深水站点,基本表现为西北-东南走向的往复流形态。从能量角度看,表层和底层海流中,潮流所占份额较大,分别占30%~40%和40%~50%,中层较小,约为20%。对东沙群岛西南陆架陆坡区环流,观测计算结果证实了西向强流的存在,且垂向结构具有显著的季节变化,在200 m水深处没有明显的南海暖流,只是10~30 m以上层次存在逆风海流。海南岛以东海域连续15个月表层环流的结果表明,冬季明显受到南海暖流的影响,存在东北向的逆风海流,夏秋季的环流表现为西南向,流速较强,夏季也存在逆风情况,造成上述情形的原因可能是该地南海暖流的流轴具有季节性变化——冬季偏南,夏季偏北。  相似文献   

19.
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.  相似文献   

20.
A one and a half layer inviscid hydraulic model was introduced to study the dynamics of the flow that brings the bottom cold water southward into the Korea Strait. Two different channel geometries were considered; a rectangular channel and a channel with a sloping western wall, which represents the continental slope near the Korean coast. The lower layer water in the rectangular channel separates from the eastern wall when the depth of the channel,H o, becomes shallower than a critical value donwstream. Hydraulic control of the flow is possible after the flow separation, if the channel becomes shallow enough. Before hydraulic control, the width of the flow decreases asH o decreases, but the effect of the slope of the western wall is negligible. After the control, however, the width increases asH o decreases or the slope becomes weaker. If the slope becomes weak enough or the channel becomes deep enough, which is determined by upstream conditions, the lower layer is observed only over the sloping western wall. This simple model shows that the continental slope between the East Sea (Japan Sea) and the Korea Strait makes the southward flowing North Korean Cold Water bank against the Korean coast in the Korea Strait. The model also shows that the sloping bottom near the Korean coast makes the bottom cold water of the Korea Strait appear only over the continental slope away from the trough of the strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号