首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
夏季南海上层环流动力机制的数值研究   总被引:10,自引:0,他引:10  
通过利用一个分区性的正压-斜压衔接模式来探讨夏季南海的上层环流特征及其动力机制,结果表明:夏季期间,由于风生环流的不稳定性促使在东沙群岛附近的气旋涡的强度及位置发生变化,并间接导致黑潮侵入南海北部的程度变化以及气旋涡南侧的反气旋式环流、西沙群岛西南侧的气旋涡的强度和范围出现波动现象;在南海南部的北向西边界流由于离岸的西南季风所驱动在中南半岛中部沿岸脱离岸线往东北方向的流动,导致沿岸的水体大量流失而在沿岸形成一支南向补偿流并在西沙群岛西南侧诱生一气旋涡,而上述的离岸西边界流则作顺时针方向流动,从而在南海南部形成反气旋式大环流;在南沙海槽附近出现的局地气旋涡和万安滩附近的气旋涡分别受β效应、底形效应的作用而形成.  相似文献   

2.
南海冬、夏季环流的三维数值模拟   总被引:6,自引:0,他引:6  
本文利用一个斜压三维陆架海模式——HAMSOM模式对12月份和8月份的南海环流进行数值模拟,结果为:对上层流场,在12月份,在西沙群岛-中沙群岛海区间呈现一个气旋式环流,在越南中部东岸存在一支南向西边界流,在金兰湾的远海为一局地反气旋涡,在南海南部,主要表现为万安滩的气旋式大弯曲(气旋涡)及在北康暗沙北侧的反气旋涡;在8月份,在东沙群岛-中沙群岛-吕宋岛西侧海域间存在一大尺度的气旋涡,在南海西部主要表现为以西沙群岛南部的气旋涡与金兰湾-礼乐滩间的反气旋式大环流相对峙的局面,同时在万安滩东侧有-气旋涡.由于斜压效应、底形效应的作用,使冬、夏季的南海南部中层流场几乎与上层流场相反.  相似文献   

3.
P矢量方法在南海夏季环流诊断计算中的应用   总被引:8,自引:4,他引:8  
基于1998年6~7月南海调查航次的CTD资料,对南海环流采用最近发展的P矢量方法进行诊断计算.计算结果:黑潮向西入侵南海,然后做反气旋弯曲向东北方向流动,最终有通过巴士海峡流出南海的趋势.在南海北部存在一个气旋性环流,这个环流的强度和范围随深度增加而减小.该环流的冷中心位置随深度增加稍向南移.南海中部、越南以东海域存在一个明显的气旋涡和反气旋涡,尤其在200m及其以上水层均相当稳定,反气旋涡位于越南以东,其中心位置在11°53'N,111°50'E,气旋涡的中心位置在13°17'N,112°55'E,两者的尺度皆约为250km.吕宋岛西侧存在一个反气旋涡.在计算海区南部、巴拉望岛西南海域,100m以上层存在一个反气旋式涡.从各层流场分布均可以显示海流在西部强化的现象.  相似文献   

4.
南海环流的一个两层模式   总被引:12,自引:9,他引:12  
本文用一个两层模式,对黑潮在南海海盆中诱导出现的环流现象进行机制性的模拟.文章表明南海环流的主要特征表现为在东沙群岛附近存在约280d的周期性的气旋涡系统的盛衰现象,进一步证实了南海北部陆坡外的西(西南)向海流实际上是气旋涡南侧的循环海水再向北流动的再循环水,并指出该海流具有很强的斜压性;文章还指出,在一定的条件下,黑潮入流有可能向西侵入南海北部,从而形成反气旋式的套状流结构.  相似文献   

5.
2000年夏季南海环流的改进逆方法计算   总被引:9,自引:3,他引:9  
基于2000年8月航次在南海调查资料,采用改进逆方法,并结合TOPEX/ERS分析的SSH分布,获得以下的主要结果:(1)南海中部和西南部环流系统主要受反气旋环流所支配.主要有越南东南反气旋涡W1,其水平尺度约为300km,垂向深度可达1000m以深,流速很强,其最大流速为79cm/s左右,还有暖涡W2以及吕宋岛西南反气旋涡环流系统W3.其次,在反气旋涡W1与W2之间还存在气旋式涡C1.其水平尺度比暖涡W1小得多,流速也较强.两涡W1与C1之间存在一支南向流,它们组成一个准偶极子.(2)在暖涡W1的西侧存在西边界流,即北向射流,其流速很强,约在12°N流向转向东北.(3)南海北部环流系统主要受气旋环流所支配.在断面N2附近及以北存在一个气旋式环流系统.其次,在海南岛东南存在一个尺度不大的反气旋环流系统.(4)南海东南部环流系统主要受气旋环流所支配.主要有在巴拉望岛以西存在尺度较大的气旋环流系统,以及暖涡W1东南存在一个气旋环流系统.其次,在加里曼丹岛西北还存在范围不大的反气旋环流.(5)比较1998年夏季航次与2000年夏季航次时计算结果,虽然它们在定量上有些变化与差别,但在定性上它们的环流结构有十分相似之处.这表明,南海环流具有明显的季节特性.(6)比较2000年夏季南海水文结构,流函数分布以及TOPEX/ERS的SSH分布,它们在定性上十分吻合.  相似文献   

6.
1998年冬季南海环流的三维结构   总被引:10,自引:3,他引:7  
利用1998年11月28日至12月27日南海的调查资料,采用三维海流诊断模式,计算了冬季南海三维海流,所得结果如下:(1)冬季南海环流系统方面:1)南海北部,在吕宋西北海域分别存在一个气旋式、反气旋式涡.2)南海中部,在越南近岸存在较强的、南向的西边界射流.其以东海域出现较强的气旋式环流.南海中部东侧海域存在一个较弱的反气旋式环流.3)南海南部,一般流速较弱.在112°E以西受反气旋式环流所控制,加里曼丹岛西北海域存在气旋性环流.由于受调查海域所限,这两个环流只部分出现.(2)上述环流系统与200 m层水平温度、密度分布对应较好.(3)南海冬季环流垂向速度分布方面:1)表层,南海北部,在吕宋西北为范围较大的上升流海区.而在东沙群岛附近海域出现了下降流.海南岛以南及东南海域也存在下降流.南海中部,越南以东海域出现范围较大的下降流,其以东为上升流海域,而在巴拉望岛西北海域又出现下降流.南海南部,基本上被上升流海域所控制.2)次表层与表层不同,例如在次表层,海南岛东南部海域出现上升流.中层和深层垂向速度分布与次表层相似.(4)关于南海垂向速度分量分布的动力原因:在表层,风应力旋度场起着主要作用;在次表层,β效应与斜压场相互作用是重要的动力因子,而风应力旋度场和β效应与正压场相互作用也有一定影响;在南海中部等区域的中层以及在南海的深层,主要受B效应与斜压场相互作用和B效应与正压场相互作用的共同作用.  相似文献   

7.
利用2015年6月南海北部现场观测的水文数据,结合卫星高度计资料,分析了2015年6月13日—28日南海北部陆坡在气旋涡-反气旋涡的双涡结构影响下的水文和环流特征。结果表明,2015年6月南海北部陆坡调查海区表层50 m以浅盐度存在NE—SW向低盐区,表层盐度最小值低于32,这表明南海北部陆坡存在跨陆架海水输送。在观测期间,南海北部陆坡调查海区受气旋涡和反气旋涡双涡结构影响,使得南海北部陆坡表层100 m以浅存在跨陆坡流,流速最大值出现在两涡交汇区域。此外,通过潜标连续海流资料,发现南海北部陆坡环流呈现了“深入浅出”(100 m以深层为向岸的入侵、以浅层为离岸的出流)的“两层结构”。  相似文献   

8.
基于1993-2012年Aviso海面高度异常资料识别中尺度涡,计算南海海域涡动能比,并结合涡旋移动轨迹对气旋涡、反气旋涡的时空分布特征进行分析。结果表明,涡动能比能直观刻画区域涡旋活跃程度,结合涡旋移动轨迹后能有效反映涡旋演变过程。冬季季风期,南海中尺度涡最为活跃,反气旋涡、气旋涡交错分布在南海东部。台湾岛西南反气旋涡大多向西北方向移动,少数在气旋涡作用下向西南方向移动。越南东部涡旋呈偶极子分布,夏秋季北部是气旋涡,南部是反气旋涡,冬季北部是反气旋涡,南部是气旋涡。  相似文献   

9.
南海环流的一个约化模式   总被引:14,自引:0,他引:14  
利用约化数值模式研究了黑潮在巴士海峡的流况及受其影响的南海海盆区的环流,结果为:定常的黑潮入流在巴士海峡不易出现显著的环状流动结构,但在海峡西侧诱生一气旋涡,该涡旋达到一定强度时,β因子和侧边界作用使其向西南移动,因此,模式给出的南海环流呈准半年周期的气旋涡现象。动力分析表明,气旋涡因非线性平流作用将黑潮西侧的气旋性切变涡度向南海北部输送所致。模式同时计算了入流方向和流轴位置呈周期性变化时,巴士海峡和南海的流动结构。  相似文献   

10.
南海风生正压环流动力机制的数值研究   总被引:5,自引:0,他引:5  
翟丽  方国洪  王凯 《海洋与湖沼》2004,35(4):289-298
利用ECOM si模式 ,1 0′× 1 0′水平分辨率 ,垂向 2 0个σ层 ,由H/R( 1 983)气候学月平均风应力场和开边界流量驱动 ,模拟了南海风生环流的季节变化 ,并针对南海冬夏季风生正压环流的动力机制进行了数值实验。实验中考虑以下动力因子对南海冬夏季环流的影响 :1 )开边界入流和出流 ;2 )风应力旋度 ;3)地形 ;4)惯性效应 ;5 ) β效应。数值实验表明 ,通过开边界进入南海的流量与风应力在南海内部引起的流量量值相当 ,特别是冬季两者对北部陆坡边界流和南海西边界流均有重要贡献 ;冬季南海海盆尺度气旋式流圈主要是由风应力旋度引起的 ,但平均风应力可以加强卡里马塔海峡的出流 ,而北部反气旋风应力旋度可引起南海暖流 ;陆坡地形使得海盆尺度冬季气旋式流圈中心限制在深海区 ,南海北部陆架的存在大大削弱了南海暖流的强度 ;惯性效应对南海环流的整体结构无明显影响 ,但使得黑潮入侵和台湾西南的流套变弱 ;深海海盆环流中 β项是与风应力旋度平衡的基本项 ,且 β效应对环流的西向强化和吕宋海峡入侵作用至关重要  相似文献   

11.
A review on the South China Sea western boundary current   总被引:7,自引:2,他引:5  
The advances in understanding the South China Sea (SCS) western boundary current (SCSwbc) have been reviewed since the works of Dale (1956) and Wyrtki (1961) in the middle of the 20th century. The features of the pattern of SCSwbc and the oceanic phenomena associated with it are focused on. The current is driven mainly by monsoon over the SCS and partially by winds over the tropical Pacific governed by the island rule. The SCSwbc exhibits strong seasonal variation in its direction and patterns. In winter, the current is strong and flows southwestward along the South China shelf and slope from the east of Dongsha Islands to the northern central Vietnamese coast, then turns to the south along the central and southern Vietnamese coast, and finally partially exits the SCS through the Karimata Strait. In summer and early fall, the SCSwbc can be divided into three segments based on their characteristics. The southern segment is stable, flowing northward from the Karimata Strait up to about 11 N, where it separates from the coast forming an eastward offshore current. The separation of the current from Vietnamese coast induces some striking features, such as upwelling and cold sea-surface temperature. The middle segment off the central Vietnamese coast may have a bimodal behavior: northward coastal current and meandering current in early summer (June-July), and cyclonic gyre in later summer and early fall (August-September). The northern segment is featured by the summer SCS Warm Current on the South China shelf and a southwestward subsurface current along the continental slope.  相似文献   

12.
On the basis of hydrographic data obtained from 12 June to 6 July, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and the main circulation features can be summarized as follows: In the northern SCS there are a cyclonic eddy C1 near Dongsha Islands and an anti-cyclonic eddy W1 west of Luzon Island. In the central SCS a strong anti-cyclonic eddy W3 and a cyclonic eddy C3 compose a quasi-dipole southeast of Vietnam. A coastal northward jet is present at the western boundary near the Vietnam coast above 300 m level. This northward coastal jet flows northward and turns eastward at about 14°N, and then flows southeastward into the area between eddies W3 and C3. In the southern SCS the current is weaker. The most important dynamic mechanism underlying the circulation in the SCS is the joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is the interaction between the wind stress and relief (IBWSR). Comparison of the characters of circulation in the SCS during summer 2000 with that during summer 1998 reveals no obvious variability of the main characteristics.  相似文献   

13.
A coupled single-layer/two-layer model is employed to study the South China Sea (SCS) upper circulation and its response before and after the onset of summer monsoon. It is found that, in summer, due to the β effect and the first baroclinic mode of the wind-driven current, a northward western boundary jet current is formed along the Indo-China Peninsula coast, and it leaves the coast at about 13° N and diffuses towards northeast; next to the Indo-China Peninsula, a large anticyclonic  相似文献   

14.
三维斜压陆架海模式的应用: 南海上混合层的季节变化   总被引:6,自引:0,他引:6  
从一个三维斜压陆架海模式的数值模拟结果来揭示南海上混合层的季节变化规律,结果表明:(1)在南海北部上混合层的厚度(即混合层的下界深度)具有明显的季节性变化,与在南海南部上混合层的变化明显不同,前者的混合强度的变化幅度远比后者的要大得多.(2)在中南半岛中部东岸外海的西边界区域内,由于经常受冷涡控制,下层冷水涌升,上层水体层化显着,使得该海区垂直混合减弱.(3)在一些气旋(反气旋)涡的边缘,混合层厚度等值线分布密集,且水平梯度较大.(4)南海上混合层的厚度分布特征与上层环流的分布格局之间存在着较好的地转调整关系.  相似文献   

15.
The unique survey in December 1998 mapped the entire western boundary area of the South China Sea(SCS),which reveals the three-dimensional structure and huge volume transport of the swift and narrow winter western boundary current of the SCS(SCSwwbc) in full scale. The current is found to flow all the way from the shelf edge off Hong Kong to the Sunda Shelf with a width around 100 km and a vertical scale of about 400 m. It appears to be the strongest off the Indo-China Peninsula, where its volume transport reached over 20×10~6 m~3/s. The current is weaker upstream in the northern SCS to the west of Hong Kong. A Kuroshio loop or detached eddy intruded through the Luzon Strait is observed farther east where the SCSwwbc no more exists. The results suggest that during the survey the SCSwwbc was fed primarily by the interior recirculation of the SCS rather than by the"branching" of the Kuroshio from the Luzon Strait as indicated by surface drifters, which is likely a near-surface phenomenon and only contributes a minor part to the total transport of the SCSwwbc. Several topics related to the SCSwwbc are also discussed.  相似文献   

16.
1998年夏季南海环流的三维结构   总被引:1,自引:2,他引:1  
利用1998年6月12日至7月6日南海的调查资料,采用三维海流诊断模式,计算了夏季南海三维海流,结合卫星海表面高度距平资料,得到结果如下:(1)南海北部,在吕宋岛以西海域和东沙群岛附近海域,分别存在一个反气旋式涡和东沙群岛西南的气旋式涡.(2)南海中部,越南以东海域出现由暖涡W3和冷涡C3组成的一个准偶极子.在冷涡C3和暖涡W3以北分别存在一个暖涡W2和冷涡C2.(3)在越南近岸存在较强的、北向的西边界射流,此北向射流在14°N附近离岸转为东,并流入两涡W3和C3之间.(4)南海南部,在巴拉望岛的西南海域,100m以浅水层存在反气旋式涡,而在其较深水层,此处变为气旋式涡.(5)南海环流的动力机制有两个:最重要的动力因子为斜压场与地形相互作用项,其次为风应力与地形相互作用项.(6)讨论了夏季南海环流垂向速度w分布,例如在30m层,Ekman抽吸对垂向速度w分布起着重要作用.(7)与2000年夏季南海环流的比较,1998年夏季计算海域涡旋W3,C3,C2等的位置变化并不大.  相似文献   

17.
南海夏季环流机制的数值试验研究   总被引:2,自引:0,他引:2  
用一个三维、自由表面、斜压海洋模式,通过数值试验的方法对南海夏季的环流特征及其形成机制进行探讨。结果表明,产生南海南部反气旋式环流的主要机制是西南季风的驱动,斜压效应起到了增强环流强度的作用;海底地形和黑潮的强迫是形成“南海暖流”和台湾海峡中东北向流的主要原因,而斜压效应和海底地形是形成夏季“南海暖流”右侧偏西向流的主要原因;南海北部的气旋式涡旋是在黑潮、海底地形和斜压效应等因素共同作用下形成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号