首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 165 毫秒
1.
夏秋季南黄海浮游植物群落及其调控因子   总被引:1,自引:1,他引:0  
The phytoplankton water samples were collected in two multidisciplinary investigations which were carried out during summer(June) and autumn(November to December) of 2011. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. The phytoplankton community was dominated by diatoms and dinoflagellates in the southern Yellow Sea(YS) in summer and autumn. In summer, Paralia sulcata and Prorocentrum dentatum were the predominated species, the cell abundance ranged from 0.074 to 107.733×103 cells/L with an average of 9.057×103 cells/L. Two phytoplankton high abundance appeared in northwest part of the survey area and the Changjiang River Estuary, respectively. In autumn, Par. sulcata became the predominant species, and the phytoplankton cell abundance ranged from 1.035×103 to 8.985×103 cells/L, the average was 3.263×103 cells/L. The phytoplankton abundance in surface layer presented the homogeneous distributions. Canonical Correspondence Analysis(CCA) method was applied for discovering the relationship between environmental factors and the common found phytoplankton species. The responses of phytoplankton to nutrients were varied between summer and autumn. The abundance of most predominant species, Par. sulcata was strongly correlated to temperature and salinity in autumn, but not the case in summer.  相似文献   

2.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

3.
The West Pacific Ocean is considered as the provenance center of global marine life and has the highest species diversity of numerous marine taxa. The phytoplankton, as the primary producer at the base of the food chain,effects on climate change, fish resources as well as the entire ecosystem. However, there are few large-scale surveys covering several currents with different hydrographic characteristics. This study aimed to explore the relationships between the spatio-temporal variation in phytoplankton community structure and different water masses. A total of 630 water samples and 90 net samples of phytoplankton were collected at 45 stations in the Northwest Pacific Ocean(21.0°–42.0°N, 118.0°–156.0°E) during spring and summer 2017. A total of 281 phytoplankton taxa(5 μm) belonging to 61 genera were identified in the study area. The distribution pattern of the phytoplankton community differed significantly both spatially and temporally. The average abundances of phytoplankton in spring and summer were 797.07×10~2 cells/L and 84.94×10~2 cells/L, respectively. Whether in spring or summer, the maximum abundance always appeared in the northern transition region affected by the Oyashio Current, where nutrients were abundant and diatoms dominated the phytoplankton community;whereas the phytoplankton abundance was very low in the oligotrophic Kuroshio region, and the proportion of dinoflagellates in total abundance increased significantly. The horizontal distribution of phytoplankton abundance increased from low to high latitudes, which was consistent with the trend of nutrient distributions, but contrary to that of water temperature and salinity. In the northern area affected by the Oyashio Current, the phytoplankton abundance was mainly concentrated in the upper 30 m of water column, while the maximum abundance often occurred at depths of 50–75 m in the south-central area affected by the Kuroshio Current.Pearson correlation and redundancy analysis(RDA) showed that phytoplankton abundance was significant negatively correlated with temperature and salinity, but positively correlated with nutrient concentration. The phytoplankton community structure was mainly determined by nutrient availability, especially the N:P ratio.  相似文献   

4.
The distribution of phytoplankton and its correlation with environmental factors were studied monthly during August 2012 to July 2013 in the Yantian Bay. A total of 147 taxa of phytoplankton were identified, and the average abundance was in the range of 0.57×10~4 to 7.73×10~4 cell/L. A total of 19 species dominated the phytoplankton assemblages, and several species that are widely reported to be responsible for microalgae blooms were the absolutely dominant species, such as Skeletonema costatum, Navicula sp., Thalassionema nitzschioides,Pleurosigma sp., and Licmophora abbreviata. The monthly variabilities in phytoplankton abundance could be explained by water temperature, dissolved oxygen, salinity, dissolved inorganic nitrogen(DIN), and suspended solids. The results of a redundancy analysis showed that p H and nutrients, including DIN and silicate(SiO_4), were the most important environmental factors controlling phytoplankton assemblages in specific months. It was found that nutrients and pH levels that were mainly influenced by mariculture played a vital role in influencing the variation of phytoplankton assemblages in the Yantian Bay. Thus, a reduction of mariculture activities would be an effective way to control microalgae blooms in an enclosed and intensively eutrophic bay.  相似文献   

5.
The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.  相似文献   

6.
Horizontal distributions of phytoplankton abundance,species composition as well as environmental factors were investigated in the surface waters of southern South China Sea(SCS) in early summer(May 16 to June 7) of 2009.In most areas of southern SCS,the concentrations of nitrogen and phosphorus were very low and DIN/DIP ratios usually were lower than the Redfield N/P Ratio of 16:1.Nitrogen nutrients were significant lower in the upwelling region off Vietnam.A total of 144 taxa of phytoplankton were identified in the study area.The dominant genera were Prorocentrum,Gonyaulax,Gyrodinium,Scrippsiella and Chaetoceros,respectively.Spatial patterns of early-summer phytoplankton abundance and species composition should be mainly controlled by the upwelling off Vietnam and the discharge of Mekong River in the southern SCS.Diatoms dominated in the nutritious Mekong River Estuary or upwelling region off Vietnam;while dinoflagellates dominated in the oligotrophic pelagic region.The canonical correspondence analysis(CCA) indicates that most of diatoms favor higher levels of silicate and phosphorus,as well as lower temperature;while most of dinoflagellates favor the lower silicate and phosphorous and higher temperature.Correlation and CCA results indicate that silicate,nitrate and temperature were the most relevant environmental factors to regulate the horizontal pattern of early-summer phytoplankton in the surface waters of southern SCS.  相似文献   

7.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

8.
春季黄海浮游植物生态分区:物种组成   总被引:3,自引:1,他引:2  
Phytoplanktonic ecological provinces of the Yellow Sea(31.20°–39.23°N, 121.00°–125.16°E) is derived in terms of species composition and hydrological factors(temperature and salinity). 173 samples were collected from 40 stations from April 28 to May 18, 2014, and a total of 185 phytoplanktonic algal species belonging to 81 genera of 7phyla were identified by Uterm?hl method. Phytoplankton abundance in surface waters is concentrated in the west coast of Korean Peninsula and Korea Bay, and communities in those areas are mainly composed of diatoms and cyanobacteria with dominant species of Cylindrotheca closterium, Synechocystis pevalekii, Chroomonas acuta,Paralia sulcata, Thalassiosira pacifica and Karenia mikimotoi, etc. The first ten dominant species of the investigation area are analyzed by multidimensional scaling(MDS) and cluster analysis, then the Yellow Sea is divided into five provinces from Province I(P-I) to Province V(P-V). P-I includes the coastal areas near southern Liaodong Peninsula, with phytoplankton abundance of 35 420×10~3–36 163×10~3 cells/L and an average of 35 791×10~3 cells/L, and 99.84% of biomass is contributed by cyanobacteria. P-II is from Shandong Peninsula to Subei coastal area. Phytoplankton abundance is in a range of 2×10~3–48×10~3 cells/L with an average of 24×10~3cells/L, and 63.69% of biomass is contributed by diatoms. P-III represents the Changjiang(Yangtze River) Diluted Water. Phytoplankton abundance is 10×10~3–37×10~3 cells/L with an average of 24×10~3 cells/L, and 73.14% of biomass is contributed by diatoms. P-IV represents the area affected by the Yellow Sea Warm Current.Phytoplankton abundance ranges from 6×10~3 to 82×10~3 cells/L with an average of 28×10~3 cells/L, and 64.17% of biomass is contributed by diatoms. P-V represents the cold water mass of northern Yellow Sea. Phytoplankton abundance is in a range of 41×10~3–8 912×10~3 cells/L with an average of 1 763×10~3 cells/L, and 89.96% of biomass is contributed by diatoms. Overall, structures of phytoplankton community in spring are quite heterogeneous in different provinces. Canonical correspondence analysis(CCA) result illustrates the relationship between dominant species and environmental factors, and demonstrates that the main environmental factors that affect phytoplankton distribution are nitrate, temperature and salinity.  相似文献   

9.
The development of the phytoplankton community was studied in the Jiaozhou Bay during the spring to neap tide in August 2001, through three cruises and a 15 d continuous observation. This investigation indicates that diatom cell abundance increased sharply following the end of a spring tide, from 9 cells/cm^3 to a peak of 94 cells/cm^3. The dominant species composition and abundance show a quick species sequence from spring to neap tide, and the dominant species at the start phase is Skeletomena costatum, then changes to Chaetoceros curvisetus, finally it changes to Eucampia zodiacus. Silicate concentration increases during spring tide, as a result of nutrient replenishment from the water-sediment interface, its initial average concentration in neap tide is 1.39μmol/dm^3 and reached the peak average concentration of 8.40μmol/dm^3 in spring tide. But the nitrogen concentration dropped due to dilution by the low nitrogen seawater from the Huanghai Sea, its initial average concentration in neap tide is 67μmol/dm^3 and decreased to the average concentration of 54μmol/dm^3 in spring tide. The degree of silicon limitation was decreased and phytoplankton, especially diatoms, responds immediately after nutrient replenishment in th ewater column. Skeletonmea costatum, as one of the dominant species in the Jiaozhou Bay, shows a quicker response to nutrient availability than Eucampia zodiacus and Chaetoceros curvisetus. It is proposed that dominant species composition and water column stability synchronously determine the development of phytoplankton summer blooms in the Jiaozhou bay.  相似文献   

10.
Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalazsiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, sihcon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus, silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6. 4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates ( mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus, sil- icon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.  相似文献   

11.
To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency (F q /F m ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q /F m , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.  相似文献   

12.
Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes “Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae”. Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.  相似文献   

13.
The Changjiang Diluted Water (CDW) significantly influences the chemical, biological, and sedimentary processes in the Yellow and East China Seas. Based on in situ observations during the summers of 2006 and 2008 and associated satellite-derived data, the offshore detachment of the CDW plume and its mechanisms are investigated, and the related ecological impacts associated with the detached CDW are examined. We show that the detached low-salinity water from the CDW plume can partially reach the seabed, with its volume gradually diminishing from the surface to the seabed, and with a horizontal distribution that initially shifts eastward and then southward. The double-upwelling system, combined with the prevailing southerly wind and the anticyclonic eddy off the Changjiang Estuary, favors the detachment of the CDW plume. In particular, the anticyclonic eddy provides a habitat or venue for the formation and maintenance of the detached low-salinity water, and is responsible for the local presence of low-salinity water along the seabed. Data analysis indicates that this detachment can induce phytoplankton blooms and that enhanced chlorophyll a (Chl-a) contents were significantly associated with moderate nutrient concentrations and good light conditions in the offshore low-salinity water. This study also demonstrates that the variability in the vertical distribution of Chl-a off the Changjiang Estuary is related to the offshore detached CDW, and that the local deepening of the DCM (depth of Chl-a maximum) and the peak primary production occur within the offshore CDW. More importantly, we find that high Chl-a concentrations in the bottom water can be induced by the anticyclonic-eddy-featuring offshore CDW. Our results may facilitate a better understanding on the role of the detached CDW in local marine biogeochemical processes.  相似文献   

14.
The species composition, phytoplankton abundance, and relative yield of the variable fluorescence (F v /F m ) were determined in the mesotrophic Nhatrang Bay in October–November of 2004. The species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to the number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. The mean biomass in the water column under 1 m2 (B t ) varied from 2.3 to 64.4 mg C/m3 being 31.0 mg C/m3 on average. The values of B t were the lowest at the stations nearest to the river mouth. Seaward, B t increased. The values of B t increased with depth at some stations and decreased at others. In the surface sea layers, the biomass was lower than that in the underlying waters. The values of F v /F m ranged from 0.10 to 0.64 (at a mean value of 0.49). The lowest values of F v /F m were observed in the area close to the seaport. Over the greater part of the bay, the values of F v /F m were higher than 0.47. Such values are indicative of the relatively high potential photosynthetic activity of the phytoplankton. The abundance and species diversity were higher than those in the dry season (March–April).  相似文献   

15.
The distribution and feeding of dominant mesozooplankton species were studied in the estuary of the Ob River and adjacent inner Kara Sea shelf waters in September 2013. It was shown that the spatial distributions of Cyclops sp., Senecella siberica, Limnocalanus macrurus, Mysis oculata, Drepanopus bungei, Jashnovia tolli and Pseudocalanus sp. are related to the specific characteristics of the hydrographic regime in the estuarine frontal zone. The distributions of Cyclops sp., Senecella siberica, and Pseudocalanus sp. are mainly limited by salinity, while other species inhabit an area with a wide range of salinity values without clear preferences. Peaks of their abundance could be either consolidated or distanced in space. The populations of Jashnovia tolli, Drepanopus bungei, and Pseudocalanus sp. permanently inhabit the layer under the pycnohalocline; the populations of Cyclops sp. and Mysis oculata inhabit the upper mixed layer. Limnocalanus macrurus demonstrates a different vertical distribution pattern: the copepod undertakes diel vertical migrations in the southern part of the estuarine frontal zone; in its northern part, the population is concentrated below the pycnocline during day and night. The differences in the distributions of the studied species determine their feeding behavior and their role in phytoplankton grazing. The most intense utilization of biomass and production of autotrophic phytoplankton by zooplankton occur in the freshened water zone and the adjacent southern periphery of the estuarine frontal zone: the total daily phytoplankton consumption makes up 10–18% of the biomass and 60–380% of primary production. Daily zooplankton consumption of phytoplankton in the estuarine frontal zone decreases to 2–7% of the biomass and to 14% of primary production; in inner shelf waters, the values do not exceed 1% for both phytoplankton biomass and production.  相似文献   

16.
Bacterial abundance, phytoplankton community structure and environmental parameters were investigated to study the relationships between bacteria and phytoplankton during giant jellyfish Nemopilema nomurai blooms in the central Yellow Sea during 2013. N. nomurai appeared in June, increased in August, reached a peak and began to degrade in September 2013. Results showed that phosphate was possible a key nutrient for both phytoplankton and bacteria in June, but it changed to nitrate in August and September. Phytoplankton composition significantly changed that pico-phytoplankton relative biomass significantly increased, whereas other size phytoplankton significantly decreased during jellyfish bloom. In June, a significantly positive correlation was observed between chlorophyll a concentration and bacterial abundance(r=0.67, P0.001, n=34).During jellyfish outbreak in August, there was no significant correlation between phytoplankton and bacteria(r=0.11, P0.05, n=25), but the relationship(r=0.71, P0.001, n=31) was rebuilt with jellyfish degradation in September. In August, small size phytoplankton occupied the mixed layer in offshore stations, while bacteria almost distributed evenly in vertical. Chlorophyll a concentration significantly increased from(0.42±0.056) μg/L in June to(0.74±0.174) μg/L in August, while bacterial abundance just slightly increased. Additionally, the negative net community production indicated that community respiration was not entirely determined by the local primary productivity in August. These results indicated that jellyfish blooms potentially affect coupling of phytoplankton and bacteria in marine ecosystems.  相似文献   

17.
It is shown that, in 2002–2005, the mass development of the coccolithofore Emiliania huxleyi on the Gelendzhik shelf occurred annually and in May–June its abundance reached 1.5 × 106 cells/l. In 2004–2005, the bloom of E. huxleyi was accompanied by a mass development of the diatom alga Chaetoceros subtilis var. abnormis f. simplex (0.6–0.9 × 106 cells/l); for the first time, it was registered as a dominating form of the Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in the phytoplankton throughout the entire period of the studies. Meanwhile, in the early summer period, the bulk of the biomass consisted of coccolithophores (50–60%), while, in the late summer period, diatomaceous algae dominated (50–70%). Among the ecological factors that favor the coccolithophore development one may note the microstratification of the upper mixed layer at a high illumination level and high temperature in the surface waters (18–21°C). The terrigenous runoff during the rainy period had a negative effect on the E. huxleyi development, while storms dispersed the population over the upper mixed layer. The wind-induced near-shore upwelling stimulated the development of diatoms.  相似文献   

18.
Cascading of cold Antarctic shelf water (ASW) initiates compensatory isopycnic upwelling of the warm Circumpolar Deep Water (CDW). The baroclinic/thermoclinic Antarctic slope front (ASF) is formed, and a mesoscale intrusive structure develops on the shelf edge and slope. Mesoscale processes when the ASF peaks are periodically accompanied by local baroclinic instability, which forms a smaller-scale intrusive structure. Therefore, the ASF is naturally subdivided into two layers according to the intrusion scales (vertical δН and horizontal L) and the horizontal parameters of the front (thermoclinity (TL)ρ and baroclinity γρ). Analysis of ASF intrusive layering due to the baroclinic factor supports the following conclusion: the higher the (TL)ρ of the ASF, the greater the intrusion intensity |δθ| (temperature anomaly amplitude), while an increase in γρ of the ASF leads to a decrease in intrusion scales δН and L. Frontal intrusions can be distinguished by a development degree. Regardless of the degree of development, all warm intrusions are characterized by vertical density stratification, while cold intrusions are characterized by density quasihomogeneity. According to field data, the ASF instability process is subdivided into four stages. When theASF is baroclinically unstable, the local baroclinic deformation radius RdL of the front is close in magnitude to the horizontal scale L of the intrusions that form, and their characteristic vertical scale δH is close to the typical vertical scale of front instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号