首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张洪生  冯文静  商辉 《海洋学报》2007,29(5):161-173
以一种新型的含变换速度变量的Boussinesq型方程为控制方程组,采用五阶Runge-Kutta-England格式离散时间积分,采用七点差分格式离散空间导数,并采用恰当的出流边界条件,从而建立了非线性波传播的新型数值模拟模型.对均匀水深水域内波浪传播的数值模拟,说明在引入变换速度后进一步增大了模型的水深适用范围.对潜堤地形上波浪传播的数值模拟说明,在引入变换速度后进一步提高了模型的数值模拟精度.  相似文献   

2.
黄海冷水团热结构及其环流解析研究   总被引:10,自引:0,他引:10  
本文从一般的流体动力学-热力学方程组出发,通过对历史资料的分析,确立了描述黄海冷水团热结构及其环流的非线性控制方程组,得出近似解析解。理论计算结果表明,夏季北黄海冷水团区域存在中心上升边缘下降的气旋式密度环流。  相似文献   

3.
—In this paper,integrating the Yangtze Estuary with the Hangzhou Bay,a 2-D velocity fieldmodel is established.In the model,fine self-adaptive grids are employed to adapt to the complicated coast-al shape.The hydrodynamic equations satisfied by two contravariant components of velocity vector andsurface elevation in non-orthogonal curvilinear coordinates are used.In each momentum equation thecoefficients before the two partial derivatives of surface elevation with respect to variables of alternative di-rection coordinates have different orders of magnitude,i.e.,the derivative with the larger coefficient mayplay a more important role than that with the smaller one.With this advantage,the ADI scheme can beeasily employed.The hydrodynamic factors include tidal current,river runoff and wind-induced current.In terms of tidal current,seven main constituents in the area are considered in the open boundaries.Theverifications of surface elevation process and current velocity process in the spring tide and in the n  相似文献   

4.
This paper deals with hydrodynamic forces of a single semisubmerged circular cylinder containing a concentric cylindrical hole constrained to move in a water domain of finite depth. The fluid domain is divided into inner and outer regions. The Laplace equations governing velocity potentials for the three regions are solved by separation of variables and expressed in terms of eigenfunctions of the resulting equations which satisfy appropriate boundary conditions. Continuity of pressure and velocity at the interface of the regions provides the necessary equations from which the velocity potentials, pressures and forces are obtained. Numerical results are plotted for added mass and damping coefficients for different draft-to-depth and radius-to-depth values and for various wave amplitudes.  相似文献   

5.
The instability of long-wave disturbances of a geostrophic current with linear velocity shear is studied with allowance for the diffusion of buoyancy. A detailed derivation of the model problem in dimensionless variables is presented, which is used for analyzing the dynamics of disturbances in a vertically bounded layer and for describing the formation of large-scale intrusions in the Arctic basin. The problem is solved numerically based on a high-precision method developed for solving fourth-order differential equations. It is established that there is an eigenvalue in the spectrum of eigenvalues that corresponds to unstable (growing with time) disturbances, which are characterized by a phase velocity exceeding the maximum velocity of the geostrophic flow. A discussion is presented to explain some features of the instability.  相似文献   

6.
Methods of studying the dynamics of wave disturbances in st;ratified shear flows of an ideal incompressible fluid are considered. The equations governing the motions of interest represent Hamilton equations and are derived by writing the velocity field in terms of Clebsch potentials. Equations written in terms of semi-Lagrangian variables are integrodifferential equations, which make it possible to consider both continuous and discontinuous solutions, as well as the cases where the parameters of the undisturbed medium are step functions. Two dynamic systems are presented. The first, canonical system of equations is most suitable for describing gravity waves in a shear flow in the case where the undisturbed medium is characterized by sharp gradients of density and flow velocity. The simplest model in which disturbances obey this system of equations is the well-known Kelvin-Helmholtz model. The second dynamic system describes, in particular, gravity-shear waves and, in the case of a homogeneous medium, shear waves in a two-dimensional flow. This system is most suitable for studying the dynamics of disturbances in models with sharp gradients of vorticity. On the basis of the approach developed in this study, the problem of the dynamics of disturbances in a flow with a continuous distribution of vorticity in a finite-thickness layer is solved. If the thickness of this layer is small compared to the characteristic wavelength and the gradient of the undisturbed vorticity in this layer is large, the solution has the form of a mode whose frequency is close to the frequency of the shear wave on a vorticity jump that would be obtained by letting the layer’s thickness approach zero. The results obtained allow, in particular, the estimation of the range of validity of finite-layer approximations for models with smooth profiles of flow and density. In addition, these results can be interpreted as the basis for the development of nonlinear aspects of the theory of hydrodynamic stability.  相似文献   

7.
This paper investigates hydrodynamic pressures and forces on submerged vertical cylindrical tanks under the action of harmonic ground excitations. Water is assumed to be imcompressible and inviscid, motion irrotational and waves are of small amplitude. Semi-analytical method is used for the solution, that is, the fluid domain is divided into inner and outer regions. The Laplace equations governing velocity potentials for the two regions are solved by separation of variables and expressed in terms of eigenfunctions of the resulting equations which satisfy appropriate boundary conditions. Continuity of pressure and velocity at the interface of the inner and outer regions provides the necessary equations from which the velocity potentials, pressures and forces are obtained. Numerical results are presented in graphical form for forces and pressures for a range of excitation frequencies for selected proportions of tank geometry and water depth.  相似文献   

8.
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents.  相似文献   

9.
10.
11.
Quasi-3D Numerical Simulation of Tidal Hydrodynamic Field   总被引:2,自引:0,他引:2  
Based on the 2D horizontal plane numerical model,a quasi-3D numerical model is establishedfor coastal regions of shallow water.The characteristics of this model are that the velocity profiles can be ob-tained at the same time when the equations of the value of difference between the horizontal current velocityand its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent withthe results of the 2D model.The circulating flow in the rectangular area induced by wind is simulated and ap-plied to the tidal flow field of the radial sandbanks in the South Yellow Sea.The computational results fromthis quasi-3D model are in good agreement with analytical results and observed data.The solution of the finitedifference equations has been found to be stable,and the model is simple,effective and practical.  相似文献   

12.
基于时间平均的海底沉积物声速预测   总被引:2,自引:2,他引:0  
在海底沉积物声速预测中,把不同海域的物理性质完全不同的沉积物试验数据拟合出一个统一的方程存在不足,不但数据过于离散,而且方程中参量的物理意义不明确。借鉴Wyllie等建立的时间平均方程的思路,基于声传播过程中路程、时间和声速之间的基本关系,引入了表征固液双相之间的堆垒方式和耦合状态对声传播路径影响的耦合系数,建立了沉积物声速预测模型。将鹿回头外海、南海南部和北部的沉积物测量数据进行线性回归分析,分别得出适用于不同海域的沉积物声速预测模型,拟合的复相关系数较大,偏差较小,证明该模型能够反映声速随孔隙度的变化规律,且各参数物理意义明确,具有一定的研究和理论探索意义。  相似文献   

13.
Spatial vibrations of hose constructions are considered with points of fastening under non-stationary kinematic actions. A model of hard rigid string is accepted as a computational model. The finite-difference method for the solution of equations of motion was used. A computational algorithm and a FORTRAN program were developed. The algorithm takes into account physical, geometrical and exploitative peculiarities of the constructions: bending stiffness, non-uniformity, geometrical non-linearity, conditions of fastening, internal/external hydrodynamics and internal dissipation of energy by friction between construction elements. It does not put any restraints on the initial form of construction, displacements and parameters of actions.As an example of practical application, a dynamics analysis of mooring utility systems under rough seas and wind loads was performed. Transient and steady-state modes of vibration were studied. Extreme generalized tensions and displacements of the construction were obtained as a function of roughness parameters, wind velocity and wind orientation, and geometrical and physical parameters of the construction.  相似文献   

14.
Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.  相似文献   

15.
An algorithm is proposed for solving three-dimensional ocean hydrodynamics equations without hydrostatic approximation and traditional simplification of Coriolis acceleration. It is based on multicomponent splitting of the modified model with artificial compressibility. The original system of equations is split into two subsystems describing the transport of three velocity components and adjustment of the density and velocity fields. At the adjustment stage, the horizontal velocity components are represented as a sum of the depth means and deviations; the two corresponding subsystems are derived. For barotropic dynamics, the compressibility effect is represented as the boundary condition at the free surface, while for the baroclinic subsystem, it is introduced as ε-regularization of the continuity equation. Then, the baroclinic equations are split into two subsystems describing the hydrostatic and nonhydrostatic dynamics. The nonhydrostatic dynamics is computed at a separate splitting stage. The algorithm is included into the Institute of Numerical Mathematics of the Russian Academy of Sciences model based on “primitive” equations and verified by solving the hydrodynamics problem for the Sea of Marmara.  相似文献   

16.
为完全拟合河口近海复杂岸线和工程结构以及有效局部加密,设计并建立了一个无结构三角形网格二维河口海岸水动力数值模式。空间离散主要基于有限体积法以保证守恒性,时间积分采用预估修正法以提高精度。水位在三角形网格中心通过连续方程求解;水平x方向和y方向的流速U和V均在网格边中点上通过动量方程求解。流速平流项的求解中采用了TVD格式。TVD流速平流通量为一个一阶迎风格式通量和一个二阶格式通量的组合,一阶格式通量和二阶格式通量根据流速的局部分布情况得出配比,最终组合得到TVD通量。TVD格式具有低耗散和无频散的优点,提高了模式的稳定性。应用实测资料验证建立的模式,结果显示水位、流速和流向的计算值与实测值均符合良好。  相似文献   

17.
《Coastal Engineering》1999,36(2):87-109
In this paper, a two-phase flow model is presented which simulates the fluid and sediment motions in the sheet flow regime on a flat bed under oscillatory flow conditions. The model is developed based on the continuity equations and linearised momentum equations for the fluid and sediment phases, respectively. All major forcing terms such as the intergranular stresses and the turbulent stress are included in the model. From the detailed computations and comparison with the available laboratory data it has been demonstrated that the model is capable of predicting fairly accurately both flow kinematics and sediment concentrations. In particular, the model predicts that the well known phenomenon of fluid velocity over-shoot that exists in clear water also appears in the case of lighter sediments but vanishes when the materials are heavier, which is in perfect accord with the experimental observations considered.  相似文献   

18.
For the non-negligible roll-coupling effect on ship maneuvering motion, a system-based method is used to investigate 4-DOF ship maneuvering motion in calm water for the ONR tumblehome model. A 4-DOF MMG model is employed to describe ship maneuvering motion including surge, sway, roll, and yaw. Simulations of circular motion test, static drift and heel tests are performed by solving the Reynolds-averaged Navier-Stokes (RANS) equations, after a convergence study quantifying the necessary grid spacing and time step to resolve the flow field adequately. The local flow field is analyzed for the selected cases, and the global hydrodynamic forces acting on the ship model are compared with the available experiment data. Hydrodynamic derivatives relating to sway velocity, yaw rate, and heel angle are computed from the computed force/moment data using least square method, showing good agreement with those obtained from EFD data overall. In order to investigate further the validity of these derivatives, turning circle and zigzag tests are simulated by using the 4-DOF MMG model with these derivatives. The trajectories and the time histories of the kinematic variables show satisfactory agreement with the data of free-running model tests, indicating that the system-based method coupled with CFD simulation has promising capability to predict the 4-DOF ship maneuvering motion for the unconventional vessel.  相似文献   

19.
Analternatingdirectionimplicit(ADI)numericalmodelfortwo-dimensionalhydrodynamicequations¥PanHaiandFangGuohong(ReceivedDecembe...  相似文献   

20.
In this paper, infragravity (IG) waves, forced by normally and obliquely incident wave groups, are studied using the quasi-3D (Q3D) nearshore circulation model SHORECIRC [Van Dongeren, A.R., I.A. Svendsen, 1997b. Quasi 3-D modeling of nearshore hydrodynamics. Research report CACR-97-04. Center for Applied Coastal Research, University of Delaware, Newark, 243 pp.], which includes the Q3D effects. The governing equations that form the basis of the model, as well as the numerical model and the boundary conditions, are described. The model is applied to the case of leaky IG waves. It is shown that the Q3D terms have a significant effect on the cross-shore variation of the surface elevation envelope, especially around the breakpoint and in the inner surf zone. The effect of wave groupiness on the temporal and spatial variation of all Q3D terms is shown after which their contribution to the momentum equations is analyzed. This reveals that only those Q3D coefficients, which appear in combination with the largest horizontal velocity shears make a significant contribution to the momentum equations. As a result of the calculation of the Q3D coefficients, the IG wave velocity profiles can be determined. This shows that in the surf zone, the velocity profiles exhibit a large curvature and time variation in the cross-shore direction, and a small — but essential — depth variation in the longshore direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号