首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
The parrotfish Sparisoma viride often grazes live coral from edges undermined by the Caribbean encrusting and excavating sponge Cliona tenuis. To test whether parrotfish biting action has an effect on the dynamics of the sponge–coral interaction, we manipulated access of parrotfishes to the sponge–coral border in two species of massive corals. When parrotfish had access to the border, C. tenuis advanced significantly more slowly into the coral Siderastrea siderea than into the coral Diploria strigosa. When fish bites were prevented, sponge spread into S. siderea was further slowed down but remained the same for D. strigosa. Additionally, a thinner layer of the outer coral skeleton was removed by bioerosion when fish were excluded, a condition more pronounced in D. strigosa than in S. siderea. Thus, the speed of sponge‐spread and the extent of bioerosion by parrotfish was coral species‐dependent. It is hypothesized that coral skeleton architecture is the main variable associated with such dependency. Cliona tenuis spread is slow when undermining live S. siderea owing to the coral’s compact skeleton. The coral’s smooth and hard surface promotes a wide and shallow parrotfish bite morphology, which allows the sponge to overgrow the denuded area and thus advance slightly faster. On the less compact skeleton of the brain coral, D. strigosa, sponge spread is more rapid. This coral’s rather uneven surface sustains narrower and deeper parrotfish bites which do not facilitate the already fast sponge progress. Parrotfish corallivory thus acts synergistically with C. tenuis to further harm corals whose skeletal architecture slows sponge lateral spread. In addition, C. tenuis also appears to mediate the predator–prey fish–coral interaction by attracting parrotfish biting.  相似文献   

2.
Although bioerosion is among the most destructive forces on coral reefs, indirect effects influencing the bioerosion dynamics are understudied. Here, I assess the hypothesis that coral reef grazers indirectly facilitate proliferation of bioeroding sponges by removing epibiotic fleshy seaweeds from the Great Barrier Reef. This study quantifies the degree of spatial correlation between the distribution of bioeroding sponges and the distribution of grazing pressure, as evidenced by the abundance of seaweed and parrotfish bite marks. While the sponge tissue area was negatively correlated with seaweed coverage, the number of parrotfish bite marks was associated with less algae and more sponge tissue. Several factors derived from grazing on seaweeds may facilitate sponge growth: increases in the availability of light may favor primary production by symbiotic zooxanthellae and thereby increase growth of bioeroding sponges; on the other hand, sponge settlement may be facilitated on grazed substrates. All these factors are likely related, and contribute to an increasing erosion of coral reefs. Similar processes have recently been described in Mediterranean ecosystems, suggesting that the interactions I document here, could be widespread.  相似文献   

3.
Recent studies have demonstrated that sponge‐eating fishes alter the community of sponges on coral reefs across the Caribbean. Sponge species that lack chemical defenses but grow or reproduce faster than defended species are more abundant on reefs where sponge‐eating fishes have been removed by overfishing. Does predator‐removal have an effect on the distribution of sponges at smaller spatial scales? We conducted transect surveys of sponge species that are palatable to sponge predators in proximity to refuge organisms that are chemically or physically defended (fire coral, gorgonians, hard corals) on the heavily overfished reefs of Bocas del Toro, Panama, and a reef in the Florida Keys where sponge‐eating fishes are abundant. In Panama, palatable sponge species were not distributed in close association with refuge organisms, while in the Florida Keys, palatable sponge species were strongly associated with refuge organisms. The presence of fish predators alters the meter‐scale pattern of sponge distribution, and defense by association enhances biodiversity by allowing palatable sponges to persist on reefs where sponge‐eating fishes are abundant.  相似文献   

4.
Biogenic silica (BSi) in marine sediments is an important indicator of siliceous organism distributions and paleoproductivities. Organisms that have BSi skeletons include diatoms, silicoflagellates, radiolarians and sponges. This study presents, for the first time, the distribution of biogenic siliceous fragments in shallow water sediments around Taiwan and the Sunda Shelf, which belong to this rarely studied region of the South China Sea (SCS). Thirty-one surface sediment samples were collected from intertidal to depths of 1,100?m. Only sponge spicules were found in this study and the abundance varied in the range of 3?C7,910?n?g?1 sediment. Combining previous studies with ours, from shallow to deep, it was observed that BSi composition in the surface sediment of this area changed from sponge spicules in the Sunda Shelf, followed by sponge spicules and radiolarians in the southwestern SCS, to sponge spicules, radiolarians and diatoms in the southern SCS. Based on this study, the abundance of sponge spicules correlated positively and negatively with water depth and sediment grain size when coral reef sites were excluded. The low spicule abundance in shallow waters may have resulted from local current conditions and the dilution effect through riverine input of terrestrial sediment. Other possible explanations for the varying spicule abundance among sites are the difference in local fauna, such as coral reefs which usually have high diversity and abundance of sponges. The findings provide additional information on the process of recent BSi deposition which may help future studies in sedimentology, paleogeography and paleoenvironments.  相似文献   

5.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

6.
Despite the wide range of functional roles performed by marine sponges they are still poorly represented in many research, monitoring and conservation programmes. The aim of this review is to examine recent developments in our understanding of sponge functional roles in tropical, temperate and polar ecosystems. Functions have been categorised into three areas: (a) impacts on substrate (including bioerosion, reef creation, and substrate stabilisation, consolidation and regeneration); (b) bentho-pelagic coupling (including carbon cycling, silicon cycling, oxygen depletion and nitrogen cycling); and (c) associations with other organisms (facilitating primary production, secondary production, provision of microhabitat, enhanced predation protection, survival success, range expansions and camouflage though association with sponges, sponges as a settlement substrate, disrupting near-boundary and reef level flow regimes, sponges as agents of biological disturbance, sponges as releasers of chemicals and sponges as tools for other organisms). The importance of sponges on substrate, sponge bentho-pelagic coupling, and sponge interactions and associations is described. Although the scientific evidence strongly supports the significance and widespread nature of these functional roles sponges still remain underappreciated in marine systems.  相似文献   

7.
Caribbean sponge species typical of coral reefs are generally inhibited from living in seagrass meadows by their vulnerability to predation by the large starfish Oreaster reticulatus (Linnaeus 1758). Although readily consumed by Oreaster , the conspicuous coral reef sponge species Lissodendoryx colombiensis Zea & van Soest, 1986 has expanded its habitat distribution to include a seagrass ( Thalassia testudinum Banks ex König, 1805) meadow in Belize, where individuals grow to volumes of nearly 7 l. By simple observation, L. colombiensis appears to be an inferior competitor in this system, because portions of many individuals are overgrown by seagrass sponge species. However, experimentally clustering seagrass sponges around L. colombiensis individuals deterred starfish from feeding on them, suggesting an advantage to being overgrown. Sizes of individual L. colombiensis can fluctuate widely over short time intervals, reflecting both a relatively fast growth rate and the high rate at which starfish consume this species. At the population level these fluctuations are not evident, as losses of L. colombiensis due to Oreaster are balanced by a combination of efficient recruitment, rapid regeneration and growth, and protection of portions of many individuals by the overgrowth of seagrass sponge species that are unpalatable to Oreaster . In turn, the seagrass sponges acquire stable perches on L. colombiensis individuals in this sediment-dominated habitat. Community ecology theory relating to diversity patterns in sessile organisms has focused on competition between space-requiring neighbors as the underlying process that inevitably decreases diversity unless curtailed. Sponges, with their propensity for engaging in beneficial interactions with neighbors, demand expansion of the theory to acknowledge how collaboration can increase abundance and species diversity within a community.  相似文献   

8.
The Mediterranean coralligenous substratum is a hard bottom of biogenic origin, mainly composed of calcareous algae, growing in dim light conditions. Sponges are among of the most representative taxa of the coralligenous assemblages, with more than 300 recorded species of different habits: massive, erect, boring and insinuating. When sponges die, their siliceous spicules remain trapped in the biogenic concretion, offering the opportunity to describe the coralligenous spongofauna over a very long span of time, virtually dating back to a large part of the Holocene period. The data reported here were obtained from core samples collected from four coralligenous concretions. Each block was collected in a different locality of the Ligurian Sea: Santo Stefano Shoals, Bogliasco, Punta del Faro (Portofino Promontory) and Punta Manara. Radiocarbon age determinations indicate for these conglomerates a maximal age between 1600 and 3100 years. The spicules trapped in the cores show deep dissolution marks in the form of circular holes on their surface or present an enlargement of the axial canal. However, their original shape, generally intact, suggests the absence of mechanical injuries and allows a tentative identification at the species level. The analysis of these old spicules reveals an ancient sponge assemblage composed of 30 recognisable species. This indicates that almost one half of the sponge community today settled on coralligenous substrata has been present in the conglomerates for their entire existence.  相似文献   

9.
Sven Zea 《Marine Ecology》2011,32(2):162-173
The Caribbean sponge Cliona delitrix is among the strongest reef space competitors; it is able to overpower entire coral heads by undermining coral polyps. It has become abundant in reefs exposed to organic pollution, such as San Andrés Island, Colombia, SW Caribbean. Forty‐four sponge‐colonized coral colonies were followed‐up for 13 months to establish the circumstances and the speed at which this sponge advances laterally into live coral tissue and the coral tissue retreats. Cliona delitrix presence and abundance was recorded at seven stations to interpret current reef space and coral species colonization trends. The spread of C. delitrix on a coral colony was preceded by a band of dead coral a few millimeters to several centimeters wide. However, the sponge was directly responsible for coral death only when live coral tissue was within about 2 cm distance; coral death became sponge advance‐independent at greater distances, being indirectly dependent on other conditions that tend to accelerate its retreat. Cliona delitrix advanced fastest into recently killed clean coral calices; however, sponge spread slowed down when these became colonized by algae. The lateral advance of C. delitrix was slower than other Cliona spp. encrusting excavating sponges, probably owing to the greater depth of its excavation into the substratum. Cliona delitrix prefers elevated portions of massive corals, apparently settling on recently dead areas. It currently inhabits 6–9% of colonies in reefs bordering San Andrés. It was found more frequently in Siderastrea siderea (the most abundant local massive coral), which is apparently more susceptible to tissue mortality than other corals. Current massive coral mortality caused by C. delitrix could initially change the relative proportions of coral species and in the long‐term favor foliose and branching corals.  相似文献   

10.
Some sponges of the genus Cliona (Porifera, Hadromerida, Clionidae) simultaneously excavate and encrust calcareous substratum, competing aggressively for illuminated space with corals and other organisms. To interpret current trends of reef space occupation, the patterns of distribution and size of three Caribbean species were examined at San Andrés Island and Islas del Rosario in Colombia. While Cliona aprica was ubiquitous, C. caribbaea (= C. langae) preferred deep and protected reef zones, and C. tenuis shallow and wave‐exposed settings. In contrast to the effect on other excavating sponges, chronic exposure to raw sewage did not significantly increase the abundance of the studied sponges. Substratum occupation/availability ratios showed a positive tendency of the sponges toward certain coral skeletons, and a negative or neutral tendency toward calcareous rock, indicating that establishment may be easier on clean, recently dead coral than on older, heavily incrusted substratum. High relief generally limits sponge size to that of the illuminated portions of the substratum. A generally lower proportion of small individuals than of larger ones indicates currently low recruitment rates and low subsequent mortality. Successful events of higher recruitment seem to have occurred for C. tenuis. These are related to the massive acroporid coral die‐off in the early 1980s and to asexual dispersion during storms, resulting in a current 10% substratum cover. Reefs with high coral mortality were and/or are thus more susceptible to colonization and subsequent space occupation by these sponges, although relief may prevent space monopolization.  相似文献   

11.
Sponges are sessile organisms capable of colonizing diverse substrata. In the Caribbean, coral reefs have suffered a drastic decline, and branching corals of the genus Acropora have been widely decimated. On dead coral skeletons and around surviving tissue the settling of sessile organisms can be observed, sponges being common. In order to investigate whether or not sponges have a preference for a particular species of coral, or for specific microhabitats of the colonies, we evaluated species composition, cover, richness and diversity of sponges colonizing the dead parts of still live colonies of the branching corals Acropora palmata and Acropora cervicornis in five locations of the Tayrona National Natural Park in the Colombian Caribbean. Ten colonies of Ac. palmata were quantified in each of the five locations, and eight Ac. cervicornis colonies in each of two locations. Quantification was carried out using video taken within 0.625‐m2 photoquadrats. Seventeen sponge species were found, 13 of them associated with Ac. palmata and seven with Ac. cervicornis. Desmapsamma anchorata, Clathria venosa and Scopalina rutzleri were found to be common to all Ac. palmata locations, while De. anchorata occurred in the two Ac. cervicornis locations. On Ac. palmata, encrusting sponges dominated, while on Ac. cervicornis branched and lobed sponges predominated. Significant differences in sponge cover were not found among locations but were observed in the sponge species present. On Ac. palmata the species with highest cover were D. anchorata and Cla. venosa, while on Ac. cervicornis it was De. anchorata. The richness and diversity of sponges were low for both coral species, and their varying distribution can be attributed to the differences in available substrate for attachment, given coral colony morphology; for Ac. palmata, sponges predominated on the underside of the branches, semi‐cryptic areas and colony bases, whereas for Ac. cervicornis, they were located over the entire area of the cylindrical branches. Surviving colonies of Ac. palmata and Ac. cervicornis that are still erect offer additional microhabitats for reef sponges, some of which can be found directly interacting with live coral tissue, further threatening their recovery.  相似文献   

12.
The Indo‐Pacific red lionfish Pterois volitans is widespread both in its native and its non‐native habitats. The rapid invasion of this top predator has had a marked negative effect on fish populations in the Western Atlantic and the Caribbean. It is now well documented that lionfish are invading many tropical and sub‐tropical habitats. However, there are fewer data available on the change in lionfish abundance over time and the variation of body size and diet across habitats. A recent study in San Salvador, Bahamas, found body size differences between individuals from mangrove and reef systems. That study further suggested that ontogenetic investigation of habitat use patterns could help clarify whether lionfish are using the mangrove areas of San Salvador as nurseries. The aim of the present study is to determine temporal trends in lionfish relative abundance in mangrove and reef systems in San Salvador, and to further assess whether there is evidence suggesting an ontogenetic shift from mangroves to reef areas. Accordingly, we collected lionfish from mangrove and reef habitats and calculated catch per unit effort (a proxy for relative abundance), compared body size distributions across these two systems, and employed a combination of stable isotope, stomach content, and genetic analyses of prey, to evaluate differences in lionfish trophic interactions and habitat use patterns. Our results show that populations may have increased in San Salvador during the last 4 years, and that there is a strong similarity in body size between habitats, stark differences in prey items, and no apparent overlap in the use of habitat and/or food resources. These results suggest that there is not evidence an for ontogenetic shift from mangroves to reefs, and support other studies that propose lionfish are opportunistic forages with little movement across habitats.  相似文献   

13.
Recent studies suggest a future increase in sponge bioerosion as an outcome of coral reef decline around the world. However, the factors that shape boring sponge assemblages in coral reefs are not currently well understood. This work presents the results of a 17‐month assessment of the presence and species richness of boring sponges in fragments collected from living corals, dead coral reef matrix and coral rubble from Punta de Mita and Isabel Island, two coral reefs from the central coast of the Mexican Pacific Ocean. Both localities have a high cover of dead corals generated by past El Niño Southern Oscillation events, but Punta de Mita was also highly exposed to anthropogenic impacts. Additionally, environmental factors (water transparency, water movement, temperature, sediment deposition, SST, and chlorophyll concentration) were assessed to test the hypothesis that environmental conditions which are potentially harmful for corals can enhance sponge bioerosion. Isabel Island and Punta de Mita showed a similar species richness (13 and 11 species, respectively) but boring sponge presence in both live and dead corals was higher at Isabel Island (57.6%) than at Punta de Mita (35.7%). The same result was obtained when each type of substrate was analysed separately: dead coral reef matrix (81.3% versus 55.5%), coral rubble (47.7% versus 20.0%) and living corals (43.7% versus 31.7%). A principal components analysis showed a higher environmental heterogeneity at Punta de Mita, as well as important environmental differences between Punta de Mita and Isabel Island, due to sediment deposition (2.0 versus 0.2 kg·m?2·d?1) and water movement (24.5% versus 20.5% plaster dissolution day?1), that were also negatively correlated with boring sponge presence (r = ?0.7). By analysing the boring sponge assemblage, we found that environmental settings, together with habitat availability (i.e., dead coral substrate) differentiated assemblage structure at both localities. Major structural differences were largely due to species such as Cliona vermifera, Cliona tropicalis and Aka cryptica. In conclusion, factors such as habitat availability favored the presence of boring sponges but some environmental factors such as abrasion resulting from moving sediment acted restrictively, and exerted a major role in structuring boring sponge assemblages in the Mexican Pacific.  相似文献   

14.
Sponges are important components of coral reef fauna, although little is known of their temporal dynamics. Sponges dominate the lagoon system at Palmyra Atoll in the Central Pacific, which may not be its natural state. Here we examined the temporal variability and recruitment rates of these sponge assemblages to determine if they are stable and examined the evidence that a recent transition has occurred from a coral‐ to sponge‐dominated system. We found 24 sponge species in permanent quadrats in the lagoon between 2009 and 2011, and 11 species on our recruitment panels. The sponge assemblage composition and abundance did not vary significantly between years and appear stable. Many sponge recruits were found in both years that the panels were examined although higher rates were recorded in the second year of the study. While it seems very possible that a change to a sponge‐dominated lagoon is associated with declining environmental quality at Palmyra as a result of modifications over 70 years ago, without pre‐modification data on reef assemblage composition this remains speculative. Our observations of short‐term temporal stability in the sponge assemblages at Palmyra highlight the potential for sponge‐dominated reef states to be maintained in degraded reef environments that are seemingly unsuitable for coral survival.  相似文献   

15.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

16.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

17.
Abstract. The importance of sponge spicules in the turnover of biogenic silica (BSi) in the detritic bottoms of the Eastern Ligurian Riviera was evaluated by studying sediment cores and the detrital matter collected by a trap over a one year period.
This study made evident that: i) Sponge spicules represent the main component of the BSi both in the sediments and in the trapped matter; ii) A correlation exists between the sponge biomass present on the overhanging cliff and the amount of sponge spicules found in the sediment below; iii) Inside the sediments, a superficial layer (10 cm deep) characterized by intensive silica dissolution processes can be observed; and iv) The amount of spicules collected using the trap is not constant throughout the year, but shows a characteristic trend with low values in spring and summer and high values in autumn and winter.  相似文献   

18.
Changes in the relative abundance of benthic groups on the barrier fore reef at Carrie Bow Cay, Belize, point to a significant reduction of corals and an expansion of the sponge community in 1995–2009. Fifty‐one species are now present in the four geomorphological zones of this reef: the low‐relief spur‐and‐groove zone, the inner reef slope, the outer ridge, and the fore‐reef slope (to a depth of 30 m). Five species are new additions to the sponge fauna reported for Belize, and six species account for 42.6% of the total assemblage: Niphates erecta (9.60%), Aiolochroia crassa (8.8%), Niphates digitalis (6.9%), Callyspongia plicifera (6.63%), Aplysina archeri (5.37%) and Xestospongia muta (5.37%). Species richness, average density, diversity and evenness indexes are statistically similar in these four zones but some species appear to be more dominant in certain areas. In the same 30 years, coral cover has decreased by more than 90%, while the octocoral cover has greatly increased (by as much as 10‐fold in the low‐relief spur‐and‐groove zone). Thus the Carrie Bow fore reef appears to be undergoing a transition from coral dominance in the late 1970s to algae dominance today, with other benthic groups such as sponges and octocorals showing signs of gradual recovery.  相似文献   

19.
Mangroves are an attractive fish habitat because they provide shelter and food for juvenile fishes. However, because mangroves are almost always located in shallow water and in sheltered (i.e., lagoonal, estuarine or bay) environments, the degree to which the latter two factors contribute to the attractiveness of mangrove prop-roots as a fish habitat is unknown. Artificial Mangrove Units (AMUs) were placed at multiple depths and along a gradient from an embayment to, and including, the coral reef. Total fish density and species richness in AMUs placed in the embayment was lower at 1 m depth than at 2 and 3 m depth, suggesting that shallow water is not a prerequisite for the attractiveness of mangrove prop-roots as a fish habitat. Total fish density and species richness were equal or greater in AMUs on the coral reef than in the embayment, suggesting that placement of mangroves in a sheltered lagoonal environment is not solely responsible for the attractiveness of mangrove prop-roots either. After 3 weeks, removal of AMUs did not have a negative effect on total fish density or species richness. However, within the embayment AMU removal resulted in the complete collapse of the assemblage component comprised of species that use mangroves as juvenile habitats, highlighting the need for a species-based approach towards assessing the benefits provided by the presence of mangrove root structure for fishes.  相似文献   

20.
Marine turtles are considered keystone consumers in tropical coastal ecosystems and their decline through overexploitation has been implicated in the deterioration of reefs and seagrass pastures in the Caribbean. In the present study, we analysed stomach contents of green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) harvested in the legal turtle fishery of the Turks and Caicos Islands (Caribbean) during 2008–2010. Small juveniles to adult‐sized turtles were sampled. Together with data from habitat surveys, we assessed diet composition and the taxonomic distinctness (and other species diversity measures) in the diets of these sympatric marine turtle species. The diet of green turtles (n = 92) consisted of a total of 47 taxa: including three species of seagrass (present in 99% of individuals), 29 species of algae and eight sponge species. Hawksbill turtles (n = 45) consumed 73 taxa and were largely spongivorous (16 species; sponges present in 100% of individuals) but also foraged on 50 species of algae (present in 73% of individuals) and three species of seagrass. Plastics were found in trace amounts in 4% of green turtle and 9% of hawksbill turtle stomach samples. We expected to find changes in diet that might reflect ontogenetic shifts from small (oceanic‐pelagic) turtles to larger (coastal‐benthic) turtles. Dietary composition (abundance and biomass), however, did not change significantly with turtle size, although average taxonomic distinctness was lower in larger green turtles. There was little overlap in prey between the two turtle species, suggesting niche separation. Taxonomic distinctness routines indicated that green turtles had the most selective diet, whereas hawksbill turtles were less selective than expected when compared with the relative frequency and biomass of diet items. We discuss these findings in relation to the likely important trophic roles that these sympatric turtle species play in reef and seagrass habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号