首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究   总被引:13,自引:4,他引:13  
通过对北冰洋楚科奇海和令海41个表层沉积样品中的有孔虫、介形类等钙质微体化石和硅藻、放射虫、海绵骨针等硅质微体化石的定量分析,发现表层沉积中浮游有孔虫几乎缺失,这可能与该区表层生产力相对低、碳酸盐溶解作用较强有关,而底栖有孔虫和硅质微体化石的丰度分布则明显受表层沉积物类型、表层初级生物生产力和碳酸盐溶解作用所控制。其中,北冰洋楚科奇海陆架区有孔虫丰度和分异度低,含少量浅水介形类,放射虫在陆架浅水区缺失,但含有较多硅藻和海绵骨针等其它硅质微体化石,反映该区由于海冰、表层海水温度较冷而导致表歧初级生产力相对低。白令海陆坡区底栖有孔虫丰度比较科奇海高一个数量级,底栖有孔虫分异度也相对高,硅藻、放射虫、海绵骨针等硅质微体化石的丰度与钙质化石一样,其丰度比楚科奇海明显高,反映表层初级生产力相对高。根据白令海陆坡区底栖有孔虫和硅质微体化石丰度、底栖有孔虫胶结质壳比值的水深变化,推测该区碳酸盐溶跃层和补偿深度(CCD)相对浅,分别位于水深2000m和3800m处。  相似文献   

2.
Abstract. The importance of sponge spicules in the turnover of biogenic silica (BSi) in the detritic bottoms of the Eastern Ligurian Riviera was evaluated by studying sediment cores and the detrital matter collected by a trap over a one year period.
This study made evident that: i) Sponge spicules represent the main component of the BSi both in the sediments and in the trapped matter; ii) A correlation exists between the sponge biomass present on the overhanging cliff and the amount of sponge spicules found in the sediment below; iii) Inside the sediments, a superficial layer (10 cm deep) characterized by intensive silica dissolution processes can be observed; and iv) The amount of spicules collected using the trap is not constant throughout the year, but shows a characteristic trend with low values in spring and summer and high values in autumn and winter.  相似文献   

3.
对南海北部陆坡神狐海域4口钻孔(BY1、BY2、BY3、BY4)岩心沉积物中微体古生物的研究表明晚中新世以来该区沉积物中硅质和钙质生物组分丰度具有较大时间和空间变化。从时间上看,硅质生物在晚中新世—上新世几乎缺失,中更新世以来约40万年(0~24m)才较多出现,18万年以后繁盛,大于0.15mm粗粒级有孔虫在晚中新世期间丰度很低,而在更新世—上新世丰度很高;空间上的差异表现在不同的钻井岩心中生物丰度变化范围较大。根据硅质生物丰度变化可推测晚中新世—上新世—早更新世时海水表层古生产力极低,而中更新世以来古生产力相对较高。南海北部钙质生物丰度的变化主要受控于陆源物质的输入量,在钻探区可识别2个可能具有不同物质来源的小区块,如BY1、BY2孔晚中新世—上新世陆源物质的输入量高于更新世,BY3和BY4孔更新世陆源物质的输入量高于上新世。2007年本区钻探结果揭示的一个令人惊奇和十分独特的现象,水合物以高达20%~49%饱和度状态分散在细粒沉积物(黏土粉砂)孔隙中,本研究发现这些矿层富含钙质生物组分(钙质超微化石和有孔虫),而硅质组分贫乏。由此初步推测,大量钙质生物组分的存在可能增加了黏土粉砂沉积物的孔隙空间,从而为大...  相似文献   

4.
从研究胶州湾沉积物中生源硅入手,利用对比分析对其限制的原因进行了探讨.研究表明,相对于邻近的黄海和渤海沉积物,胶州湾沉积物中的生源硅含量较高,在湾内外的三个站表层沉积物中生源硅的含量分别为1.58%、1.44%、1.48%,在整个柱状样中的平均含量分别为1.54%、1.48%和1.39%,属于高生源硅含量区.沉积物中BSi∶TN远远大于1,BSi∶TP也远远大于16,与水体中Si∶TN〈1,BSi∶16P〈1相反,同时沉积物中的OC∶BSi值远远小于Redfield比值(106∶16),表明沉积物中有机质的分解速率远大于BSi的分解速率,生源硅分解的较慢.研究还发现,生源硅和有机碳的含量有明显的正相关关系,二者共同作用的结果是造成相当大的一部分BSi被埋藏,不能参与再循环,从而水体中的硅被永久地“清除”,造成水体硅的缺乏,这可能是造成胶州湾浮游植物生长硅限制的根本原因.湾外BSi较湾内低的主要原因是湾外的沉积物因其有机质含量低,且沉积物的颗粒粗而造成BSi的溶解速率比湾内的高.根据沉积物中生源硅的沉积通量和初级生产力的对比可推知,由硅藻形成的生源硅在沉降过程中平均只有15.5%被分解重新进入水体,其余的84.5%可被埋葬而形成沉积物.而胶州湾沉积物中的硅通过沉积物-海水界面返回到水体中的速率也小于生源硅的沉积速率,这进一步证明了海水中的硅不断向沉积物迁移,导致水体中硅含量持续的低水平,进而使Si成为浮游植物生长限制因子的主要原因.  相似文献   

5.
Sponges are one of the principal agents of bioerosion and sediment production in coral reefs. They generate small carbonate chips that can be found in the sediments, and we investigated whether these could provide a means for assessment of bioerosion applicable to reef monitoring. We tested this hypothesis on samples from 12 Mexican coral reefs distributed along the Pacific coast, where boring sponges were particularly abundant, and quantified the amount of chips in samples of superficial sediment in three grain‐size fractions: fine (<44 μm), medium (44–210 μm) and coarse (>210 μm). The grain‐size distribution varied among reefs, with the majority of the sediment of most reefs being composed of coarse sands, and the medium and fine fractions dominating only at La Entrega and Playa Blanca. All the reefs presented clear evidence of bioerosion by sponges, with the characteristic chips present in the sediment, although at most sites the percentage of chips was very low (from 1% to 3% of the total sediment). Only at La Entrega and Playa Blanca did they constitute a significant fraction of the total sediment (18% and 16%, respectively). While not statistically significant, there was an interesting trend between sponge chips versus sponge abundance that suggests that quantification of the chips in the sediment could be used as a proxy for sponge erosion of the entire community, which cannot be estimated in by laboratory experiments. However, while this methodology could provide an integrated approach to monitor sponge bioerosion, more studies are necessary due to the influence of environmental factors on the transport and deposition of these chips.  相似文献   

6.
The nematofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic) was investigated. This is the first comprehensive study of nematodes associated with cold-water corals. This research mainly aimed to investigate the influence of microhabitat type on nematode community structure. Three distinct microhabitats for nematodes were distinguished: dead coral fragments, glass sponge skeletons and the underlying sediment. The nematode assemblages associated with these three microhabitats were significantly different from each other. Coral and sponge substrata lie relatively unprotected on the seafloor and are consequently more subjected to strong currents than the underlying sediment. As a result, both large biogenic substrata were characterized by higher abundances of taxa that are less vulnerable and more adapted to physical disturbance, whereas the underlying sediment yielded more slender, sediment-dwelling taxa. Typically epifaunal taxa, such as Epsilonematidae and Draconematidae, were especially abundant on dead coral fragments, where they are thought to feed on the microbial biofilm which covers the coral surface. Several epifaunal genera showed significant preferences for this microhabitat, and Epsilonema (Epsilonematidae) was dominant here. Sponge skeletons are thought to act as efficient sediment traps, resulting in a lower abundance of epifaunal taxa compared to coral fragments. The underlying sediment was dominated by taxa typical for slope sediments. The considerable degree of overlap between the communities of each microhabitat is attributed to sediment infill between the coral branches and sponge spicules. It is assumed that the nematofauna associated with large biogenic substrata is composed of a typical sediment-dwelling background community, supplemented with taxa adapted to an epifaunal life strategy. The extent to which these taxa contribute to the community depends on the type of the substratum. Selective deposit feeders were dominant on sponge skeletons and in the underlying sediment, whereas coral fragments were dominated by epistratum feeders. The presence of a microbial biofilm on the coral fragments is proposed as an explanation for the significant preference of epistratum feeders for this microhabitat. Densities in the underlying sediment were low in comparison with other studies, but biodiversity was higher here than on the coral and sponge fragments, a difference which is attributed to lower disturbance. Nevertheless, the large biogenic substrata provide a microhabitat for rare, epifaunal taxa, and fragments of both substrata within the sediment increase habitat complexity and hence biodiversity.  相似文献   

7.
A late Paleocene‐early Eocene (c. 60–53 Ma) poriferan fauna, comprising hexactinellids (Class Hexactinellida), astrophorids (Class Demospongiae: Family Astrophorida), and lithistids ("lithistid” Demospongiae) has been identified from the Tutuiri Greensand outcropping on the north coast of Chatham Island, New Zealand. Most of the fossils are hexactinellids, comprising extremely delicate siliceous networks embedded in friable sandstone. The sediment matrix within and around these skeletons contains numerous siliceous demosponge spicules, many of which are exceptionally well preserved. The soft friable matrix of the Tutuiri Greensand has made extraction a relatively simple process, making taxonomic identification of the material, and comparison with adjacent Recent and other New Zealand Eocene faunas possible. These sponge body fossils and spicule microfossils indicate a fauna that was once dominated by hexactinellids, lithistid, and astrophorid demosponges. A qualitative comparison of the abundance and diversity of the Tutuiri Greensand sponge fauna with the present‐day Chatham Rise sponge fauna indicates that the late Paleocene‐early Eocene fauna is as diverse as the Recent fauna, for the hexactinellid sponges and astrophorid demosponges, and much more diverse for lithistid sponges. The paleoecology of the Tutuiri Greensand has been interpreted as inner to mid shelf water depths (50–250 m) but the poriferan fauna described here is more like that of the present‐day soft sediment benthic environment of the Chatham Rise at 800–1200 m.  相似文献   

8.
Variations in clay mineral composition of sediment cores from the margin and continental slope of the Sunda Shelf (southern South China Sea, SE Asia) covering the past 17,000 yr reflect changing influences of sediment sources together with clay mineral partitioning processes in shallow waters. We identify the deglacial sea level rise as the principal factor driving these changes. During the late glacial, high values of kaolinite are interpreted to reflect a higher contribution of clays from soils that have formed on the exposed Sunda Shelf and in the southern archipelagos of Indonesia. At this time core sites were located in close proximity to the mouths of the Sunda Shelf palaeo-drainage systems on the emerged shelf (“Sundaland”). The progressive landward displacement of the coastline and breakdown of these vast drainage systems during deglaciation led to a decrease in influence of the kaolinite-rich southern sources. When the coastline had retreated closely to its present-day position in mid-Holocene times, the former dominance of southern sources was replaced by a stronger influence of illite-rich sources (e.g. Borneo). The overriding control of sea level changes on the clay mineral distribution patterns precludes a definite climatic interpretation of clay mineral data in terms of climatic/monsoonal changes in such highly dynamic sedimentary environment.  相似文献   

9.
Lake Poukawa, a shallow hardwater lake, is situated on calcareous lake silt overlying peat and alluvium. Two tephra layers, Taupo Pumice and Waimihia Lapilli, aged c. 2000 and 3500 calendar years respectively, were present in four cores (c. 6 m long) of the lake sediment. The diatom flora of the cores was studied to find any indication of changes in the lake morphology and to assess the effects of tephra deposition. Increased abundance of small Fragilaria spp. appears to indicate periods when the lake was less extensive, c. 3700–3500 y ago, and c. 2800–3000 y ago. In the recent past, increased abundance of Fragilaria spp. in lake sediment near the present southern margin almost certainly coincides with artificial draining since A.D. 1931. The occurrence of marine sponge spicules in the cores probably indicates that rates of erosion in the catchment were low before 2500 y ago and high 100–0 y ago. Diatom samples taken at close intervals adjacent to the Taupo and Waimihia tephras indicate that above the ash estimated numbers of diatoms per unit dry weight increase, but the proportion of epiphytic species decreases. Some of the possible causes of this increase are discussed. The tephra layers possibly preserved more diatom frustules, or increased diatom growth by supplying silica, phosphorus, and sulphur nutrients directly, or organic matter from vegetation damage in the surrounding catchment. Alternatively, in shallow hardwater lakes, if acids are deposited with the tephra and its fine particles form an impermeable layer on the calcite sediments the lake will become less alkaline and nutrient depleted.  相似文献   

10.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

11.
1 IntroductionThe South China Sea (SCS) is the largestmarginal sea in the western Pacific (see Fig. 1). It con-nects with the SCS through the Taiwan Strait, with thePacific through the Luzon Strait, with the Sulu Seathrough the Mindoro and Balabac Straits and with theJava Sea and Andaman Sea through the Sunda Shelf(For convenience, here we refer to the section at 1.5°N,Fig. 2). It is shown that the seasonal SCS circulation ismostly affected by the summer/winter monsoon, andthe no…  相似文献   

12.
Although bioerosion is among the most destructive forces on coral reefs, indirect effects influencing the bioerosion dynamics are understudied. Here, I assess the hypothesis that coral reef grazers indirectly facilitate proliferation of bioeroding sponges by removing epibiotic fleshy seaweeds from the Great Barrier Reef. This study quantifies the degree of spatial correlation between the distribution of bioeroding sponges and the distribution of grazing pressure, as evidenced by the abundance of seaweed and parrotfish bite marks. While the sponge tissue area was negatively correlated with seaweed coverage, the number of parrotfish bite marks was associated with less algae and more sponge tissue. Several factors derived from grazing on seaweeds may facilitate sponge growth: increases in the availability of light may favor primary production by symbiotic zooxanthellae and thereby increase growth of bioeroding sponges; on the other hand, sponge settlement may be facilitated on grazed substrates. All these factors are likely related, and contribute to an increasing erosion of coral reefs. Similar processes have recently been described in Mediterranean ecosystems, suggesting that the interactions I document here, could be widespread.  相似文献   

13.
Coral reefs are increasingly threatened by anthropogenic disturbances and consequently coral cover and complexity are declining globally. However, bioeroding sponges, which are the principal agents of internal bioerosion on many coral reefs, are increasing in abundance on some degraded reefs, tipping them towards net carbonate erosion. The aim of this study was to identify the environmental factors that drive the erosion rates of the common Indonesian bioeroding sponge Spheciospongia cf. vagabunda . Sponge explants were attached to limestone blocks and deployed across seven sites characterized by different environmental conditions in the UNESCO Wakatobi Biosphere Reserve in Indonesia. Average bioerosion rates were 12.0 kg m?2 sponge tissue year?1 (±0.87 SE ), and were negatively correlated with depth of settled sediment (r  = ?.717, p  < .01) and showed weak positive correlation with water movement (r  = .485, p  = .012). Our results suggest that although bioeroding sponges may generally benefit from coral reef degradation, bioerosion rates may be reduced on reefs that are impacted by high sedimentation, which is a common regional stressor in the South‐East Asian Indo‐Pacific.  相似文献   

14.
This study applied the loss after combustion (LAC) method and the acid decalcification (ADC) method to quantify different components of an excavating sponge. Samples of dried coral skeleton of Favia sp. invaded by the Indo‐Pacific excavating sponge Cliona orientalis Thiele, 1900 were used. The sponge tissue penetrated the 12‐mm‐thick samples to approximately 10 mm. The average proportional weight of organic matter, siliceous spicules, calcareous substrate and salts in the entire samples was found to be respectively 2.5%, 4.4%, 90.5% and 2.5% of dry weight applying the LAC method, and 2.9%, 5.9%, 89.0% and 2.3% of dry weight applying the ADC method. Respective volumetric proportions of the organic matter, spicules, substrate and salts were then calculated to be 6.4%, 5.5%, 85.2% and 3.0% of volume with the LAC method, and 7.4%, 7.2%, 82.7% and 2.7% of volume with the ADC method. The LAC method showed low variability of data and is simple and fast and therefore is recommended. The ADC method generated very similar results to the LAC method. However, due to the handling involved in the ADC method, more than half of the spicules may be lost and the method is therefore not recommended unless careful data corrections are considered. In addition, the buoyant weight method was used to quantify actual substrate weight in the fresh sponge‐substrate samples. This method was found to be at least 97% effective, revealing that buoyant weights can potentially be used to quantify bioerosion rates of excavating sponges. To our knowledge, this is the first study to systemically quantify organic and inorganic components of an excavating sponge and its calcareous substrate, providing improved standard methods for future studies.  相似文献   

15.
Spongivory by Parrotfish in Florida Mangrove and Reef Habitats   总被引:7,自引:0,他引:7  
Abstract. Although parrotfish are generally reported to be herbivorous, increasing evidence suggests that some Caribbean species feed on sponges. After observing grazing scars on the barrel sponge, Xestospongia muta , 40 sponges were videotaped on three reefs for >0.5 h to determine the frequency of parrotfish bites on this species. A total of 10 h of video recording captured 45 bites on normally coloured X. muta and 527 bites on four bleached X. muta by the parrotfish Sparisoma aurofrenarum, Scarus croicensis and Scarus taeniopterus. The viscera gut and liver of 55 parrotfish collected from mangrove and reef habitats were digested in nitric acid and analysed for spicule content. The parrotfish collected in the mangroves mostly Scarus guacamaia and Sparisoma chrysopterum had significantly higher masses of spicules in their viscera than did parrotfish collected on the reef Sparisoma aurofrenatum, Sparisoma viride, Sparisoma chrysopterum, Scarus vetula, Scarus coelestinus and Scarus taeniopterus . The spicules of Geodia gibhrrosa, a chemically undefended sponge that is common in the mangroves but rare in exposed locations on the reef, were abundant in the viscera of parrotfish collected in the mangroves. These results provide further evidence that fish predation has an important effect on the distribution and abundance of Caribbean sponges.  相似文献   

16.
Recent studies have demonstrated that sponge‐eating fishes alter the community of sponges on coral reefs across the Caribbean. Sponge species that lack chemical defenses but grow or reproduce faster than defended species are more abundant on reefs where sponge‐eating fishes have been removed by overfishing. Does predator‐removal have an effect on the distribution of sponges at smaller spatial scales? We conducted transect surveys of sponge species that are palatable to sponge predators in proximity to refuge organisms that are chemically or physically defended (fire coral, gorgonians, hard corals) on the heavily overfished reefs of Bocas del Toro, Panama, and a reef in the Florida Keys where sponge‐eating fishes are abundant. In Panama, palatable sponge species were not distributed in close association with refuge organisms, while in the Florida Keys, palatable sponge species were strongly associated with refuge organisms. The presence of fish predators alters the meter‐scale pattern of sponge distribution, and defense by association enhances biodiversity by allowing palatable sponges to persist on reefs where sponge‐eating fishes are abundant.  相似文献   

17.
Sediment sources, transport and deposition in the South China Sea (SCS) are addressed based on multiple proxies of 111 surface sediment samples, including clay minerals and rare earth elements. Results reveal that sediment sources in the SCS generally contain volcanic, biogenic and terrigenous materials. Volcanic material is typically distributed west of Luzon Island (including adjacent to Huangyan Island). Carbonate biogenic materials (e.g., coral and foraminifera) develop strongly around the Nansha and Xisha Islands. Terrigenous materials mainly derive from the continent via large rivers (e.g., the Pearl, Red and Mekong Rivers) and from islands via mountainous rivers (e.g. the Gaoping River in Southwest Taiwan and Rajang River in northern Kalimantan). According to clay mineral distributions of surface sediments from the SCS, the sediment transport route is traced. It extends to the central basin and even connects with the Sulu Sea through the Mindoro Strait. Further, based on rare earth element (REE) distribution patterns of the fine-grained fraction and clay mineral assemblage of surface sediments, contributions of various sediment sources are estimated at various locations on the SCS slope.  相似文献   

18.
The ecology of the family Pinnidae was studied by sampling three pinnid species from 36 sampling sites across four different microhabitats in the Gulf of Thailand. The species spatial distributions were mostly uniform, with some populations having random distributions. Species abundances differed between sandy and coral habitats according to non-metric multi-dimension scaling analyses. Although the Gulf of Thailand is a relatively small geographic area, habitats are varied enough to provide variable shell densities. Small islands are important distribution areas, and coral reefs provide both direct and indirect shelter which support high abundances, densities and increased shell size. The highest density was recorded in sand beds within coral reefs. Low density and small shell size in sand beaches might be related to high mortality in shallow water or to adaptations for survival in shallow waters. A clear correlation between sediment composition and species abundance was found in Pinna atropurpurea; abundance increased with the sand content of the sediment. For P. deltodes, abundance increased as the rock fraction of the sediment increased. These results suggest that adaptations in Pinnidae, such as shell size, shell morphology, and the exposure of the shell above the sediment-water interface, are responses for survival in different habitats.  相似文献   

19.
Recent studies suggest a future increase in sponge bioerosion as an outcome of coral reef decline around the world. However, the factors that shape boring sponge assemblages in coral reefs are not currently well understood. This work presents the results of a 17‐month assessment of the presence and species richness of boring sponges in fragments collected from living corals, dead coral reef matrix and coral rubble from Punta de Mita and Isabel Island, two coral reefs from the central coast of the Mexican Pacific Ocean. Both localities have a high cover of dead corals generated by past El Niño Southern Oscillation events, but Punta de Mita was also highly exposed to anthropogenic impacts. Additionally, environmental factors (water transparency, water movement, temperature, sediment deposition, SST, and chlorophyll concentration) were assessed to test the hypothesis that environmental conditions which are potentially harmful for corals can enhance sponge bioerosion. Isabel Island and Punta de Mita showed a similar species richness (13 and 11 species, respectively) but boring sponge presence in both live and dead corals was higher at Isabel Island (57.6%) than at Punta de Mita (35.7%). The same result was obtained when each type of substrate was analysed separately: dead coral reef matrix (81.3% versus 55.5%), coral rubble (47.7% versus 20.0%) and living corals (43.7% versus 31.7%). A principal components analysis showed a higher environmental heterogeneity at Punta de Mita, as well as important environmental differences between Punta de Mita and Isabel Island, due to sediment deposition (2.0 versus 0.2 kg·m?2·d?1) and water movement (24.5% versus 20.5% plaster dissolution day?1), that were also negatively correlated with boring sponge presence (r = ?0.7). By analysing the boring sponge assemblage, we found that environmental settings, together with habitat availability (i.e., dead coral substrate) differentiated assemblage structure at both localities. Major structural differences were largely due to species such as Cliona vermifera, Cliona tropicalis and Aka cryptica. In conclusion, factors such as habitat availability favored the presence of boring sponges but some environmental factors such as abrasion resulting from moving sediment acted restrictively, and exerted a major role in structuring boring sponge assemblages in the Mexican Pacific.  相似文献   

20.
南海南部表层沉积物中生物硅的分布及其环境意义   总被引:1,自引:0,他引:1  
对南海南部25个表层沉积样进行了生物硅的测定分析,试图揭示南海南部表层沉积生物硅的分布及其对现代海洋环境的指示意义,以便为古海洋学研究提供进一步的科学依据。研究发现,表层沉积物中生物硅含量与其所处水深呈显著正相关关系,相关系数达到0.782。陆架浅水区表层沉积物中生物硅含量非常低,不能反映表层水体中硅质生物生产力情况,这可能与沉积类型和陆源物质输入影响有关。深水区表层沉积物中生物硅的含量分布表明,其不仅能反映表层水体中硅质生物的古生产力水平,而且还能指示上升流的强弱,从而进一步证实了利用沉积物中生物硅含量来追踪上升流发育和变化的有效性与可信度。研究结果还显示,在研究区域中北部表层沉积生物硅中放射虫和海绵骨针较硅藻占有更大的比重,这可能是由于硅藻易被溶解并易被其他生物体摄食的缘故。在有上升流发育的海域,放射虫、硅藻和海绵骨针基本上表现出较高的丰度,这与高的生物硅含量相一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号