首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
侯海平  赵楠  夏璟  严然 《海洋测绘》2020,40(4):68-71
利用成像声纳对油气管线进行探测,是重要的声学测量技术手段之一。侧扫声纳和环扫声纳是两种典型的实孔径成像声纳,介绍了这两种声纳的成像特点,分别从搭载平台、扫测特点、参数显示和声图特征等4个方面进行了比较,结合工程实例给出了两种声纳对海底油气管线探测的应用效果,分析比较了二者的优缺点。所得结论对于了解和掌握侧扫声纳和环扫声纳设备性能,进行海底油气管线检测和状态评估具有重要的工程实用意义。  相似文献   

2.
侧扫声纳图像增强技术   总被引:1,自引:0,他引:1  
随着海洋探测技术的飞速发展,侧扫声纳的图像质量和定位精度迅速提高,其应用日益广泛和深入。在声纳图像判读分析时,常常需要进行辐射改正和均衡增强。根据海底地貌声纳图像的特点,归纳了几种有效、适用的图像增强方法,并建立了声纳图像分析软件。  相似文献   

3.
船载低频多波束测深声纳、侧扫声纳可以对深海海底地形地貌进行快速、高效、大面积探测,但其测量精度有限,难以满足深海科学考察、资源勘探开发对高精度海底地形地貌的需求。随着各类大深度水下移动载体(如深海拖体、水下机器人、遥控潜器和载人潜水器)的涌现,特别是各类耐高压测绘声纳的商业化,使大深度近海底精细地形地貌探测成为可能。首先分析了多波束测深声纳、侧扫声纳和测深侧扫声纳等3种测绘声纳的基本原理,然后分别介绍了各类测绘声纳的国内外典型商业化产品,并通过典型实例分析了其在大深度近海底精细测绘中的应用情况。  相似文献   

4.
侧扫声纳是海洋测绘领域的常用设备,为解决侧扫声纳波束模式带来的声纳图像中央区域质量较差的问题,提出了侧扫声纳图像中央区的自动确定和重建方法。首先根据侧扫声纳测量原理,基于波束模式,自动确定侧扫声纳图像的中央区域;然后根据图像强度梯度和像素可靠信息,计算图像重建区域的优先级;最后根据优先级顺序,采用基于样例的方法对中央区进行重建,提高侧扫声纳图像质量。研究表明,重建后的侧扫声纳图像无论是在主观视觉还是客观评价指标方面,都取得了满意的结果。采用本文所提方法得到的重建图像,能够清晰地反映海底特征,具有很好的应用价值。  相似文献   

5.
介绍了低频声纳在浅海水下检波器定位中的工作原理,分析了低频声纳在浅海定位中存在的技术难点,进行了检波器接收声纳信号、仪器采集声纳信号的测试及试验,并对测试结果进行了分析,得到声纳信号作为初至波震源的研究结论,明确了下一步的研究方向。  相似文献   

6.
基于多波束测深声纳工作原理,结合国内外主流浅水多波束测深声纳产品与技术发展现状,分析了浅水多波束测深声纳具备的5种典型能力,提出了从能力表征的角度理解浅水多波束测深声纳性能指标;总结了保障这些能力所采用的主要关键技术,讨论了技术实现的具体思路,列举了仿真或试验数据处理结果;展望了多波束测深声纳的发展趋势。  相似文献   

7.
从侧扫声纳各类数据的特点出发,通过构建声纳图像的地理编码模型,提出侧扫声纳图像地理编码方法,将声纳回波数据与定位数据一一对应。实验数据结果表明:该方法是合理可行的,不仅较好地处理了定位数据,消除了拖鱼轨迹线上的折点和扇形裂缝,而且可实现海底回波点的地理定位。  相似文献   

8.
为满足多波束声纳量值溯源与传递需求,设计多波束声纳关键参数的计量测试系统。基于大比尺原型深水港池和多维运行控制机构,通过水下横向测距代替垂向测深的方式对多波束声纳进行了测深准确度与有效条带宽度的计量测试。阐述了测试系统的主要组成和测试方法,给出了本测试系统测深结果的扩展不确定度。参考标准值与示值(或标称值)比对结果表明,被检多波束声纳测深示值误差小于0.2%,条带宽度误差小于7%。为规范水下声纳设备技术指标校准,指导多波束声纳计量标准建设提供参考。  相似文献   

9.
侧扫声纳和多波束测深系统组合探测海底目标   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了侧扫声纳和多波束测深系统的特点,通过实例说明了侧扫声纳和多波束测深系统在海洋目标探测中的综合应用。综合利用多波束测深系统测量数据和侧扫声纳声像图,可有效增强不同观测数据的互补性,提高工程质量。  相似文献   

10.
侧扫声纳是海洋地形地貌测量的必备仪器之一。主要介绍了侧扫声纳探测技术的研究现状,重点阐述了其最新研究进展,给出了侧扫声纳技术未来的发展趋势。针对国内外实际应用需求,提出了几点建议,以期为我国侧扫声纳技术相关研究提供参考。  相似文献   

11.
An experiment aboard the Scripps Institution of Oceanography's RV Thomas Washington has demonstrated the seafloor mapping advantages to be derived from combining the high-resolution bathymetry of a multibeam echo-sounder with the sidescan acoustic imaging plus wide-swath bathymetry of a shallow-towed bathymetric sidescan sonar. To a void acoustic interference between the ship's 12-kHz Sea Beam multibeam echo-sounder and the 11-12-kHz SeaMARC II bathymetric sidescan sonar system during simultaneous operations, Sea Beam transmit cycles were scheduled around SeaMARC II timing events with a sound source synchronization unit originally developed for concurrent single-channel seismic, Sea Beam, and 3.5-kHz profile operations. The scheduling algorithm implemented for Sea Beam plus SeaMARC II operations is discussed, and the initial results showing their combined seafloor mapping capabilities are presented  相似文献   

12.
In this paper we examine the use of bathymetric sidescan sonar for automatic classification of seabed sediments. Bathymetric sidescan sonar, here implemented through a small receiver array, retains the advantage of sidescan in speed through illuminating large swaths, but also enables the data gathered to be located spatially. The spatial location allows the image intensity to be corrected for depth and insonification angle, thus improving the use of the sonar for identifying changes in seafloor sediment. In this paper we investigate automatic tools for seabed recognition, using wavelets to analyse the image of Hopvågen Bay in Norway. We use the back-propagation elimination algorithm to determine the most significant wavelet features for discrimination. We show that the features selected present good agreement with the grab sample results in the survey under study and can be used in a classifier to discriminate between different seabed sediments.  相似文献   

13.
14.
The feasibility of adding an interferometric swath bathymetric system to GLORIA, a 6.6 kHz long-range sidescan sonar, is discussed. The size of GLORIA's low-frequency transducer arrays and towfish precludes significant modifications, but even without such changes bathymetric errors could be several tens of metres over a usable swath somewhat smaller than the normal GLORIA swath. A swath bathymetry based on GLORIA will have random errors depending strongly on wind speed, water depth, and swath width. Within the range of these parameters, root-mean-square bathymetry errors in the range of 1-100 m can be expected  相似文献   

15.
《Oceanologica Acta》1999,22(6):679-686
The application of marine geophysics and GIS techniques to the characterization of benthic habitats has increased the ability of fisheries managers to assess distribution and habitat types beyond common practices. We report upon a 150 kHz sidescan sonar survey offshore of Kruzof Island, Alaska undertaken to characterize rockfish (Sebastes) habitat. Using GIS, MapGrafix and Map1Factory we determined the percentage of seafloor cover that exists in our survey area. Bathymetry in the study area was determined with sidescan interferometry. All XYZ data were gridded using Surfer and plotted in shaded relief, bathymetric contour, and 3-dimensional formats. Contoured bathymetry was used as an over-lay in MapGrafix. Small sub-areas were extracted from the bathymetric data for closer study, and gridded in Surfer. Areas of the mosaic where backscatter patterns were not distinct were verified with hand samples and video collected with the submersible Delta. The use of submersibles for verification of interpreted lithologies and surface textures enables a high degree of accuracy for the interpretations. Lithotypes were lumped into larger groups based on morphology and fish associations with different morphologies verified using the submersible. The accuracy of digital maps from high-resolution sidescan sonar data allows a close quantification of the areal extents of these important features, directing the application of management strategies to critical areas.  相似文献   

16.
Acoustic backscatter images of the seafloor obtained with sidescan sonar systems are displayed most often using a flat bottom assumption. Whenever this assumption is not valid, pixels are mapped incorrectly in the image frame, yielding distorted representations of the seafloor. Here, such distortions are corrected by using an appropriate representation of the relief, as measured by the sonar that collected the acoustic backscatter information. In addition, all spatial filtering operations required in the pixel relocation process take the sonar geometry into account. Examples of the process are provided by data collected in the Northeastern Pacific over Fieberling Guyot with the SeaMARC II bathymetric sidescan sonar system and the Sea Beam multibeam echo-sounder. The nearly complete (90%) Sea Beam bathymetry coverage of the Guyot serves as a reference to quantify the distortions found in the backscatter images and to evaluate the accuracy of the corrections performed with SeaMARC II bathymetry. As a byproduct, the processed SeaMARC II bathymetry and the Sea Beam bathymetry adapted to the SeaMARC II sonar geometry exhibit a 35m mean-square difference over the entire area surveyed.On leave at the Naval Research Laboratory, Code 7420, Washington D.C. 20375-5350.  相似文献   

17.
A procedure for postprocessing bathymetry data provided by a phase-measuring sidescan sonar system is presented. The data were collected with the SeaMARC II system, and are generally characterized by a high level of noise and uneven spatial sampling. Before any spatial filtering is applied, data are selected to remove most of the obvious artifacts and to retain instantaneous depth profiles whose slant ranges increase monotonically from a central location to the edges of the swath. An extrapolation scheme, patterned after a potential field, is proposed to fill gaps in the coverage or to extend the bathymetric swath to that of the corresponding sidescan image when regridding the data to a rectangular frame. To fill the near nadir gap typically found in these data, a specific interpolation methodology is developed that takes into account the slant range of the first bottom return as received by the sidescan sonar itself or by a shipboard echo-sounder. Spatial low-pass filtering is applied through convolutions with parabolic windows whose width is proportional to the footprint of the acoustic beam along track and roughly 1/8 of the swath width across track. Mismatches of contour lines between adjacent tracks are reduced through a statistical method design to correct systematic profile errors  相似文献   

18.
There is a pressing need for standardization of data derived from bathy‐metric swath‐mapping systems. Currently several dozen multibeam and sidescan sonar data formats exist within the oceanographic community, and more can be expected as new systems are developed. Without some standardization of swath‐mapping data formats, the capability for use and integration of data from different systems will be severely compromised.

This paper presents a strategy for organizing swath bathymetry data in a logical modular fashion that will allow data from all current swath bathymetric sonar systems to be stored and accessed in a common fashion. We have chosen the approach of defining compact efficient modules for each logically independent portion of a data record and storing it in a manner that is portable between diverse computer architectures and operating systems. This approach is extensible to accommodate new types of data. Although specifically developed for swath bathymetry, this format is also capable of supporting digital sidescan data and other types of swath data.  相似文献   

19.
The combination of multi-beam echo-sounder swath bathymetry and high-resolution deep-towed sidescan sonar provides a powerful database from which to examine mid-ocean ridge processes. We have used such a database, gathered from the Mid-Atlantic Ridge north of the Kane Fracture Zone (the MARNOK area), to examine the relationship between tectonic, volcanic, and bathymetric segmentation. We have identified structural domains, with different fault distributions, and neovolcanic segments that are distinct from the 2nd or 3rd order bathymetric segmentation.From their mutual relationships, a model is proposed for the magmatic accretion of oceanic crust at slow spreading ridges that relates the local melt supply to the tectonic style. We suggest that these are mutually interactive, and determine whether volcanic extrusion along the ridge is continuous and slow, or episodic and rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号