首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
From the phase-resolving improved Boussinesq equations (Beji and Nadaoka, Ocean Engineering 23 (1996) 691), a phase-averaged Boussinesq model for water waves is derived by more effectively describing carrier wave groups and accompanying long wave evolution with less CPU time. Linear shoaling characteristics of carrier wave equations are investigated and found to agree exactly with the analytical expression obtained from the constancy of energy flux for the improved Boussinesq equations themselves, showing that the present model equations are the results of a consistent derivation procedure regarding energy considerations. Numerical simulations of the derived equations for the single wave group and narrow-banded random waves show the validity of the present model and its high performance, especially on the CPU time.  相似文献   

2.
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.  相似文献   

3.
This paper presents the development of a generalized Boussinesq (gB) model for the periodic non-linear shallow-water waves. An incident cnoidal wave solution for the gB model is derived and applied to the wave simulation. A set of radiation boundary conditions is also established to transmit effectively the cnoidal waves out of the computational domain. The classical solutions of the second-order cnoidal waves are discussed within the content of the KdV equation and the generalized Boussinesq equations. An Euler's predictor-corrector finite-difference algorithm is used for numerical computation. The propagation of normally incident cnoidal waves in a channel is studied. The simulated wave profiles agree well with the analytical results. The temporal and spatial evolution of an obliquely incident cnoidal wave is also modelled. The phenomenon of Mach reflection is discussed.  相似文献   

4.
A Boussinesq model for simulating wave and current interaction   总被引:1,自引:0,他引:1  
A new formulation of a pair of Boussinesq equations for three-dimensional nonlinear dispersive shallow-water waves is presented. This set of model equations permits spatial and temporal variations of the bottom topography and the presence of uniform currents. The newly derived equations are used to simulate the propagation of cnoidal waves and their interactions with a uniform current in a wave channel. The modified Euler's predictor-corrector algorithm for time advancing and a central difference representation for the space derivatives are applied to the computation of the basic equations. A set of open boundary conditions is developed to effectively transmit the cnoidal waves out of the computational domain. It is found that, as expected, the wave length decreases with an opposing current and increases with a following current. The wave height increases in magnitude with an opposing current and decreases with a following current. The Mach reflection due to oblique cnoidal waves propagating into an open channel with an opposing current is also investigated. Due to the opposing current, the wave patterns are compressed into smaller saddle-like regions in comparison with the Mach reflection without current effect.  相似文献   

5.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

6.
Enhancements for the Bragg reflection are introduced for three sets of 2D higher order Boussinesq equations to improve the prediction of the Bragg reflection. The extension of the approach to other sets of Boussinesq equations is discussed. The analytical solutions for the Bragg reflection over an infinite number of sinusoidal bars are derived for these Boussinesq models and compared to the exact theoretical solution in order to determine the optimized values of the parameters in the new enhancement terms. Numerical simulations are also carried out for the Bragg reflection over a finite number of sand bars and compared with corresponding measurements to validate the enhancements. Comparisons with other forms of Boussinesq models are made to discuss the applicability of different forms of Boussinesq models to rapidly varying topography with sand bars. The effects of the mild slope assumption on the prediction of Bragg reflection and of wave reflection on a plane self are also discussed.  相似文献   

7.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   

8.
完全非线性孤立波的直墙反射   总被引:2,自引:2,他引:0  
报道了应用边界积分方法模拟完全非线性孤立波的传播与直墙反射,给出了波形演变过程。结果表明,本模型对计算孤立波的传播与直墙反射是有效的。三阶Boussinesq方程的孤立波解比低阶方程的孤立波解更接近完全非线性的数值解.当来波波高增大时,孤立波直墙反射的相位滞后变小。若考虑大波高孤立波的直墙反射或波——波相互作用,一阶理论预报的相位滞后往往低估实际情况。  相似文献   

9.
A Numerical Model for Nonlinear Wave Propagation on Non-uniform Current   总被引:3,自引:0,他引:3  
On the basis of the new type Boussinesq equations (Madsen et al.,2002),a set of equations explicitly including the effects of currents on waves are derived.A numerical implementation of the present equations in one dimension is described.The numerical model is tested for wave propagation in a wave flume of uniform depth with current present.The present numerical results are compared with those of other researchers.It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves.Moreover,the effects of inputting different incident boundary conditions on the calculated results are studied.  相似文献   

10.
非线性波浪时域计算的三维耦合模型   总被引:3,自引:1,他引:2  
将计算区域Ω划分为内域Ω1和外域Ω22=Ω-Ω1),外域控制方程采用改进线性频散特性的二维Boussinesq方程,用预报一校正法数值求解;结构物附近的内域控制方程为三维Navier-Stokes方程,由VOF方法数值求解。通过在外域和内域相匹配的交界面上设置合适的速度和波面边界条件,建立了三维非线性波浪时域计算的耦合模型。模拟试验表明:(1)耦合模型数值波浪水池可以产生稳定的、重复性较好的波动过程;(2)用耦合模型数值波浪水池求解较大浅水区域上的非线性波浪数值计算问题可以取得较高的计算效率,同时又能得出结构物附近的复杂流场。  相似文献   

11.
《Coastal Engineering》2001,42(2):155-162
It is studied whether the mass transport or energy transport is the proper viewpoint for internally generating waves in the extended Boussinesq equations of Nwogu [J. Waterw., Port, Coastal Ocean Eng. 119 (1993) 618–638]. Numerical solutions of the Boussinesq equations with the internal generation of sinusoidal waves show that the energy transport approach yields the required wave amplitude properly while the mass transport approach yields wave amplitude different from the required one by the ratio of phase velocity to energy velocity. The waves which pass through the wave generation point do not cause any numerical distortion while the incident waves are generated. The technique of internal generation of waves shows its capability of generating nonlinear cnoidal waves as well as linear sinusoidal waves.  相似文献   

12.
A 3-D time-domain numerical coupled model is developed to obtain an efficient method for nonlinear waves acting on a box-shaped ship fixed in a harbor. The domain is divided into the inner domain and the outer domain. The inner domain is the area beneath the ship and the flow is described by the simplified Euler equations. The remaining area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. Along the interface boundaries between the inner domain and the outer domain, the volume flux is assumed to be continuous and the wave pressures are equal. Relevant physical experiment is conducted to validate the present model and it is shown that the numerical results agree with the experimental data. Compared the coupled model with the flow in the inner domain governed by the Laplace equation, the present coupled model is more efficient and its solution procedure is simpler, which is particularly useful for the study on the effect of the nonlinear waves acting on a fixed box-shaped ship in a large harbor.  相似文献   

13.
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations. Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations. The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.  相似文献   

14.
在二阶 Boussinesq 方程基础上,通过引入含水深导数项对该方程进行了理论上的改进,使得该方程在应用于无限沙坝 Bragg反射问题时与理论解析解在更大范围内符合.基于该改进的高阶 Boussinesq 方程,在非交错网格下建立了混合 4 阶的Adams-Bashforth- Moulton 格式的数学模型.将数值模型应用到有限个连续沙坝上波浪传播变形问题的数值模拟中,通过两点法给出数值波浪反射系数,将这些反射系数与已有的实验数据进行对比,对比表明改进后的模型计算出的反射系数与实验结果吻合更好,这验证了本文理论改进的有效性.  相似文献   

15.
In recent years the group-induced long waves have received an enhanced degree of attention. Especially in nearshore regions, the long waves can be of considerable height, and consequently the influence on harbour resonance, on the operation of ship terminals, on moorings of large vessels, etc. is obviously very important. It is the grouping of natural wave fields that generates the long waves, and they are proportional to the square of the short-wave height. Therefore, the expressions for the long-wave elevations can be found to include the short-wave components of the wave field and a second-order transfer function. This function is presented in a diagram with dimensionless parameters. For practical purposes a formula for rough estimate of the long-wave height is proposed.The second-order equations show that the long waves are determined by the difference of the wave-number vectors of the short waves. This is shown to imply that the spread of the long waves is larger than that of the short waves, and that the wave lengths of the long waves are dependent on the short-wave spread. Hereby it is possible to change the long-wave lengths, which seems to be a quality of great practical importance.The long waves are also expressed in spectral terms. That is, a formula for the directional long-wave spectrum is shown to comprise the transfer function squared and the short-wave amplitudes and phases.  相似文献   

16.
波浪水槽中非线性浅水波传播特性与模拟   总被引:2,自引:0,他引:2  
通过建立解析解、进行数值模拟和物理实验,研究了波浪水槽中非线性浅水波浪传播特性,给出了数值模拟中对应造波板做正弦运动的二阶入射边界条件。数值模拟采用高阶Boussinesq方程。实验结果、数值结果和解析解进行对比,并讨论了解析解的适用范围、高次谐波的产生及三波相互作用问题。  相似文献   

17.
非线性弱色散波内部流场的重构   总被引:1,自引:0,他引:1  
基于势流理论和级数直接求逆方法,本文建立了基于Bousinesq方程或Green-Naghdi方程给出的水深平均流速或某特征流速及波面信息重构非线性弱色散波内部流场的算法。以Bousinesq方程的孤立波解为例,用本反演方法计算了孤立波的表面水平流速及底部水平流速。结果表明本算法是有效的。本反演算法可用于获取非线性弱色散波的内部流场的详细信息。  相似文献   

18.
Euler's equations of motion in conjunction with the dynamic boundary condition are manipulated to obtain exact (and approximate) alternative momentum equations for nonlinear irrotational surface waves. The Airy and Boussinesq equations are re-derived as demonstrative examples. A fully nonlinear version of the improved Boussinesq equations is presented as a new application of the proposed equations. Further use of the equations in developing depth-integrated wave models, which are not necessarily restricted to finite depths, is also pointed out.  相似文献   

19.
Boussinesq equations describing motions of internal waves in a two-fluid system with the presence of free surface are theoretically derived, and the associated essential properties are examined in this study. Eliminating the dependence on the vertical coordinate from all variables, four equations constitute the Boussinesq model with two flexible parameters, zu and zl, which indicate the specific elevations, respectively, in the upper and lower fluids. Similar to the Boussinesq model for a single-layer fluid, zu and zl are determined by matching the linear dispersion relation with Lamb's solution. This determines the optimal model. In the analysis stage, this problem is classified into two cases, the thicker-upper-layer case and the thicker-lower-case case, to avoid the possible divergence of wave properties as the thickness ratio grows. Since there exist two modes of motions that may be excited, cases of both modes are separately analyzed. Linear characteristics including the amplitude ratios and normalized particle velocities are analyzed. Second-order harmonic waves are examined to validate nonlinear behaviors of present model. Results of linear and nonlinear investigations show that the present model indeed extends the applicable range of traditional Boussinesq equations.  相似文献   

20.
The paper analyses the transformation of tsunami-type solitary waves, propagating from the abyssal part of the Black Sea towards its shelf zone. The study is performed by solving numerically unidimensional non-linear equations for non-dispersive long waves, using the finite-difference slope and shelf, with the full wave reflection prescribed at a 10 m depth contour. The non-linearity of the process is shown to throughly impact the reflection of waves by the shore and the shape of the reflected wave. Tsunami wave heights have been seen to increase by several times in the Black sea shelf area. Translated by Vladimir A. Puchkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号