首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WANG  Shuqing 《中国海洋工程》2002,16(3):301-310
This paper investigates the characteristics of reduction of the lateral vibration by use of a Tuned Mass Damper(TMD) for offshore jacket platforms under impact loading. Unlike traditional analysis, the present analysis focnses on theenergy concept of TMD/structure systems. In this study, a time domain is taken. The platform is modeled as a simplifiedsingle-degree-of-freedom (SDOF) system by extraction of the first vibration mode of the structure and the excited force isassumed to be impact loading. The energy dissipation and energy transmission of the structure-TMD system are studied.Finally, an optimized TMD design for the modeled platform is demonstrated based on a new type of cost function - maxi-mum dissipated energy by TMD. Results indicate that TMD control is effective in reducing the standard deviation of thedeck motion but less effective in reducing the maximum response under impact loading.  相似文献   

2.
The Optimal Design of TMD for Offshore Structures   总被引:15,自引:0,他引:15  
This paper presents the optimal design procedure of Tuned Mass Damper(TMD)for re-ducing vibration of an actual steel jacket offshore platform excited by random wave loading.In this study,a frequency domain is taken.The force on the structure is determined by use of the linearized Morisonequation for an input Power Spectral Density(PSD)of wave elevation.The sensitivity of optimum valuesof TMD to characteristic parameters of random wave spectrum is analyzed.An optimized TMD designfor the modeled platform is given based on design conditions and the findings of the study.  相似文献   

3.
针对导管架式海洋平台结构型式与特点,利用冲击隔振理论,将冰锥体与隔振技术结合起来,提出一种能有效降低冰荷载激励的"两级柔性隔振锥体"设计方案。建立了两极隔振锥体简化计算模型,确定了系统振动传递系数参数之间的关系。通过建立海洋平台有限元模型,采用有限元程序,进行了模拟冰荷载激励下的振动响应分析,并对安装隔振装置的小比例模型结构进行了冲击荷载下的减振试验。结果表明采用"两级柔性隔振锥体"能有效降低传递给海洋平台的冰力极值,减小海洋平台冰激励的响应。  相似文献   

4.
LU  Jianhui 《中国海洋工程》2002,16(3):321-328
The purpose of this study is to investigate the effectiveness of multi-tuned mass dampers (MTMD) on mitigating vi-bration of an offshore oil platform subjected to ocean wave loading. An optimal design method is used to determine the optimal damper parameters under ocean wave loading. The force on the structure is determined by use of the linearized Morison equation. Investigation on the deck motion with and vvithout MTMD on the structure is made under design condi-tions. The results show that MTMD with the optimized parameters suppress the response of each structural mode. The sensitivity of optimum values of MTMD to characteristic wave parameters is also analyzed. it is indicated that a single TMD on the deck of a platform can have the best performance, and the small the damping value of TMD, the betler the vibration control.  相似文献   

5.
SHI  Xiang 《中国海洋工程》2003,17(4):481-494
A three-dimensional fixed offshore platform in deep water modeled by the finite element method is studied in this paper. Analysis of the dynamic response of the MDOF structure is realized taking the non-linearity of the wave drag force and the wave-structure interaction into account. The structural response statistics, which have Gaussian distributions, are used to evaluate the vibration effect of the structure without TMD and with TMD. And an optimal method to design TMD controlling the first mode of the multi-mode structure is proposed. Moreover, the probabilities of occurrence of sea states at the platform site are considered for prediction of the long-term effect of a TMD. Simulation results demonstrate that the long-term effect of a well-designed TMD is good and the practical use is possible due to the good stability of its optimal parameters under different sea states.  相似文献   

6.
The worldwide demand for renewable energy is increasing rapidly. Wind energy appears as a good solution to copy with the energy shortage situation. In recent years, offshore wind energy has become an attractive option due to the increasing development of the multitudinous offshore wind turbines. Because of the unstable vibration for the barge-type offshore wind turbine in various maritime conditions, an ameliorative method incorporating a tuned mass damper (TMD) in offshore wind turbine platform is proposed to demonstrate the improvement of the structural dynamic performance in this investigation. The Lagrange's equations are applied to establish a limited degree-of-freedom (DOF) mathematical model for the barge-type offshore wind turbine. The objective function is defined as the suppression rate of the standard deviation for the tower top deflection due to the fact that the tower top deflection is essential to the tower bottom fatigue loads, then frequency tuning method and genetic algorithm (GA) are employed respectively to obtain the globally optimum TMD design parameters using this objective function. Numerical simulations based on FAST have been carried out in typical load cases in order to evaluate the effect of the passive control system. The need to prevent the platform mass increasing obviously has become apparent due to the installation of a heavy TMD in the barge-type platform. In this case, partial ballast is substituted for the equal mass of the tuned mass damper, and then the vibration mitigation is simulated in five typical load cases. The results show that the passive control can improve the dynamic responses of the barge-type wind turbine by placing a TMD in the floating platform. Through replacing partial ballast with a uniform mass of the tuned mass damper, a significant reduction of the dynamic response is also observed in simulation results for the barge-type floating structure.  相似文献   

7.
Optimal Design of TMD Under Long-Term Nonstationary Wave Loading   总被引:3,自引:0,他引:3  
—Traditionally,the use of a tuned mass damper(TMD)is to improve the surviability of the pri-mary structure under extraordinary loading environment while the design loading condition is describedby either a harmonic function or a stationary random process that can be fully characterized by a powerspectral density(PSD)function.Aiming at prolonging the fatigue life of an offshore platform,this studyconsiders an optimal design of TMD for the platform under long-term nonstationary loading due tolong-term random sea waves characterized by a probabilistic power spectral density(PPSD)function.Inprinciple,a PPSD could be derived based on numerous ordinary PSD functions;and each of them is treat-ed as realization of the corresponding PPSD.This study provides a theoretical development for theoptimal TMD design by minimizing the cost function to be the mean square value of the expectedlong-term response.A numerical example is presented to illustrate the developed design procedure.  相似文献   

8.
Passive control of offshore jacket platforms   总被引:3,自引:0,他引:3  
K.C. Patil  R.S. Jangid   《Ocean Engineering》2005,32(16):1630-1949
The wave-induced dynamic force is one of the most important excitations to be dealt with in the design of offshore structures. In order to perform a reliable design of an offshore structure, it is important to obtain an exact evaluation of its dynamic response but also to examine the ways of reducing the response. This paper presents the response of offshore jacket platforms installed with energy dissipation devices such as viscoelastic, viscous and friction dampers under wave loading. The offshore jacket platforms are modeled as multi-degrees-of-freedom system provided with dampers at each floor location. The wave forces are modeled as per Morison's equation. The governing equations of motion of the jacket platform with dampers are derived and their solution in the frequency domain is presented. The uni-directional random wave loading is expressed by the Pierson-Muskowitz spectrum. The response of the jacket platform with viscoelastic, viscous and friction dampers is compared with the corresponding response without dampers in order to investigate the effectiveness of the passive control systems. It is observed that the additional dampers add substantial damping to structure and thus favorably control the response of platform structure. Among the various energy dissipation devices used for study, the viscoelastic dampers perform better in comparison to the other dampers. This is due to the fact that the added viscoelastic dampers contribute to increased viscous damping as well as lateral stiffness which reduces the response of the offshore jacket platforms significantly.  相似文献   

9.
调谐质量阻尼器对海洋平台的减振效果分析   总被引:3,自引:0,他引:3  
目前调谐质量阻尼器(TMD)的研究和设计多数是依据结构的第一阶模态进行的,忽略了TMD对结构其它模态的影响。为了明确TMD是否会对结构的高阶模态造成不利的影响以及影响的程度,论文采用模态分析法将海洋平台-TMD系统进行模态分解,推导出系统各阶模态的状态空间方程。并以一海洋平台为算例,讨论TMD针对结构的某一摸态进行设计时对各阶模态响应的减振效果,仿真的结果表明TMD对设计的模态有较好的减振效果,但对平台的其它模态响应的减振幅度有限,甚至产生不利影响,使某些模态的振动响应增幅较大。  相似文献   

10.
海洋石油平台TMD振动控制及参数优化   总被引:2,自引:1,他引:1  
研究了随机波浪载荷作用下调谐质量阻尼器(TMD)对桩基钢结构海洋平台的减振效果,采用谱分析法对TMD参数进行优化,优化TMD 使平台的位移响应标准偏差比无TMD下降12.4% 。并研究了TMD参数在优化域内的失调对响应的影响,TMD刚度失调比阻尼失调要敏感,欠阻尼失调比过阻尼失调要敏感。从振害累积概念出发,对谐激励下SDOF- TMD的Randall参数优化方法提出了改进。  相似文献   

11.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

12.
Torsional Response of the Offshore Platform with TMD   总被引:1,自引:1,他引:1  
It is pointed out in this paper that the offshore platform could be controlled by means of the Tuned Mass Damper (TMD) if there is torsional vibration in the system. The effectiveness of the location of TMD is quantified with the help of the response ratio between the peak responses of the system in the presence and in the absence of TMD. In addition, the parameters of frequency and damping ratio of TMD are optimized.  相似文献   

13.
The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.  相似文献   

14.
In this study a typical tension-leg type of floating platform incorporated with the tuned liquid column damper (TLCD) device is studied. The purpose is to find an effective and economic means to reduce the wave induced vibrations of the floating offshore platform system. The floating offshore platform has been widely applied for the offshore exploitation such as operation station, cross-strait bridges, floating breakwater and complex of the entertainment facilities. For offshore platform being employed as a public complex the stability and comfort to stay will be the major concern besides the safety requirement. Therefore, how to mitigate the vibration induced from waves and similar environmental loading becomes an important issue. The TLCD system utilizing the water sloshing power to reduce the vibration of the main structure, a newly developed device that could effectively reduce the vibrations for many kinds of structure is the first-time employed in the floating platform system. In both the analytical and experimental results it is found that the accurately tuned TLCD system could effectively reduce the dynamic response of the offshore platform system in terms of the vibration amplitude and the resonant frequency.  相似文献   

15.
Vibration Characteristics of An Offshore Platform and Its Vibration Control   总被引:1,自引:0,他引:1  
LI  Hua-jun 《中国海洋工程》2002,16(4):469-482
A template offshore platform, located in the Bohai Bay of China, has exhibited excessive, unexpected vibration un-der mildly hostile sea conditions, which has affected the normal operation of the platform. Since the structure was de-signed to sustain more severe wave climate, the cause of the excessive vibration has been suspected to originate from other sources. The main objectives of this study are to investigate the causes of the excessive vibration, and to explore possible remedies to solve the problem, In this paper, the vibration behavior of the offshore platform is analyzed by means of finite element (FE) modeling, field measurements and laboratory test. Results of analysis suggest that relative movement and impact between the piles and the jacket legs exist, i. e. the piles and the jacket are not perfectly connected. The discon-nection of the piles and jacket weakens the overall stiffness of the platform, and therefore produces unexpected excessive vibration. In this study, measures for reducing  相似文献   

16.
1.IntroductionAmong various control devices,Tuned Mass Damper(TMD)has been mostfrequently usedtothecontrol of structural vibration induced by oscillating loads such as earthquakes,winds,and waves.This is due to the fact that it operates without external e…  相似文献   

17.
Structural monitoring is essential for ensuring the structural safety performance during the service life. The process is of paramount importance in case of the offshore jacket-type platforms due to the underwater structural parts subjected to the marine environmental conditions. This work is an experimental investigation on a laboratory model of a jacket platform with the objective of establishing a baseline finite element (FE) model for long-term structural health monitoring for this type of structures. A robust damage diagnosis system is also developed which is less sensitive to both the measurements and the modeling uncertainties. Experimental vibration tests are conducted on a physical platform model to obtain dynamic characteristics and then, the initial FE-model of the intact structure is developed to determine them numerically. Some differences between numerically and experimentally identified characteristics emerge due to various uncertainties in the FE-model and measured vibration data. To minimize these differences, initial FE-model is updated according to the experimental results. The updated FE-model is employed to predict the changes in the dynamic characteristics under variety of damage scenarios which are imposed by reducing the stiffness at the components of the model. Fuzzy logic system (FLS) and probabilistic analysis is developed for linguistic classification of damage and global damage diagnosis. Incorporation of the FLS fault isolation technique into FE-model updating method are proposed and evaluated for two different FLS methods to develop a vigorous damage diagnosis method. The efficiency of the technique is validated by different damage scenarios foreseen on the physical model. This technique is shown to be effective for diagnosing the presence of degradation and quantify it.  相似文献   

18.
该文研究线性前馈 -反馈控制策略对海洋平台振动控制的有效性。线性前馈 -反馈控制只有当输入荷载为白噪声过程时 ,所实施的控制才是最优的 ,因此该文采用一白噪声过程通过滤波器来近似随机波浪力谱 ,并将海洋平台 -主动控制系统的动力学方程转化为符合随机最优控制要求的增广状态空间表达形式。依据设计目标中对安全性以及经济性的权衡 ,通过使二次型控制目标函数最小化 ,推导出了随机最优控制力的计算方法 ,从而实现了最优控制的目的。在频率域上分析了海洋平台受控后的振动响应 ,结合典型的海洋天然气生产平台算例 ,将前馈 -反馈控制与反馈控制、TMD控制加以比较 ,总结了前馈 -反馈控制的特点及其优越性  相似文献   

19.
导管架生产储油平台在油轮靠泊和外输期间,如遇风浪天气,平台的晃动非常明显,为此引入橡胶靠球减震系统。运用ANSYS有限元分析软件,建立导管架生产储油平台的真实有限元模型,计算平台在靠船碰撞力和波浪力共同作用下平台关键点位置应力变化及振动响应过程,为靠球减震系统在实际工程中应用提供理论依据。  相似文献   

20.
Monitoring offshore platforms, long span bridges, high rise buildings, TV towers and other similar structures is essential for ensuring their safety in service. Continuous monitoring assumes even greater significance in the case of offshore platforms, which are highly susceptible to damage due to the corrosive environment and the continuous action of waves. Also, since a major part of the structure is under water and covered by marine growth, even a trained diver cannot easily detect damage in the structure. In the present work, vibration criterion is adopted for structural monitoring of jacket platforms. Artificial excitation of these structures is not always practicable and ambient excitation due to wind and waves may not be sufficient for collecting the required vibration data. Alternate methods can be adopted for the same purpose, for example, the application of an impact or a sudden relaxation of an applied force for exciting the structure. For jacket platforms, impact can be applied by gently pushing the structure at the fender while relaxation can be accomplished by pulling the structure and then suddenly releasing it using a tug or a supply vessel in both cases. The present study is an experimental investigation on a laboratory model of a jacket platform, for exploring the feasibility of adapting vibration responses due to impulse and relaxation, for structural monitoring. Effects of damage in six members of the platform as well as changes in deck masses were studied. A finite element model of the structure was used to analyze all the cases for comparison of the results as well as system identification. A data acquisition and analysis procedure for obtaining the response signatures of the platform due to the impulse and relaxation procedure was also developed for possible adoption in on-line monitoring of offshore platforms. From the study, it has been concluded that both impulse and relaxation responses are useful tools for monitoring offshore jacket platforms. The present work forms the basis for the development of an automated, on-line monitoring system for offshore platforms, using neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号