首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
基于1992—2015年国际共享的ECCO v4 (Estimating the Circulation and Climate of the Ocean Version 4)同化产品, 利用热含量控制方程定量地诊断赤道太平洋(118°E—75°W, 5°S—5°N, 0~300m)和Niño 3.4区(170°W—120°W, 5°S—5°N, 0~80m)这两块区域热含量变化机制。对于去掉季节平均后的年际变化, 在赤道太平洋地区, 时间趋势项主要由经向输送和海表热通量项共同驱动。通过5°N断面的输送决定了时间趋势项的幅值和正负符号。在Niño 3.4区, 时间趋势项主要由海表热通量项和热量输送项共同驱动, 其中垂向输送对总输送贡献最大。赤道太平洋地区经向热量输送异常领先于Niño 3.4区垂向热量输送异常, 这解释了在年际尺度上赤道太平洋热含量异常领先Niño 3.4指数变化的原因。尽管EP(Eastern Pattern)型El Niño和CP(Central Pattern)型El Niño有许多不同之处, 合成分析表明, 两类El Niño的共同点为: 在赤道太平洋地区, 两类El Niño事件的热量输送异常在发展期和衰退期由经向输送主导; 在Niño 3.4区, EP型El Niño和CP型El Niño的热量输送在发展期和衰退期由垂向输送主导。  相似文献   

2.
孟加拉湾上层地转环流周年变化的遥感研究   总被引:1,自引:1,他引:1       下载免费PDF全文
邱云  李立 《海洋学报》2007,29(3):39-46
应用1993~2003年TOPEX/Poseidon卫星测高数据结合历史水文资料,反演了孟加拉湾海面动力地形的平均周年变化,探讨了孟加拉湾上层环流季节特征和演变规律.结果显示,虽然孟加拉湾的大气环流受季风支配年周期波动显著,但表层环流形态的周年演变却呈3个不同的阶段.1~4月间(东北季风后期)湾内受一个海盆尺度的强大反气旋式环流的支配,湾口为西向流;5月西南季风骤起,印度季风漂流越过印度半岛南端出现在湾口,湾内反气旋环流弱化,在其南北两侧各出现一气旋式涡,构成5~9月间南北相间的三涡结构;10月东北季风再起,湾口漂流再次转向,10~12月间湾内则为海盆尺度的弱气旋式环流.受上述环流格局影响,位于西边界的印度沿岸流亦呈相应的3个阶段变化.分析表明,孟加拉湾风应力旋度的变化是造成湾内环流3个阶段演变的主要原因.本地风场和来自赤道海域的外强迫的共同驱动形成了孟加拉湾环流周年演变的独特规律.  相似文献   

3.
北太平洋经向翻转环流(NPMOC)是北太平洋所有经向翻转环流圈的总称。其中,热带环流圈(TC)、副热带环流圈(STC)和深层热带环流圈(DTC)位于北太平洋热带-副热带海域,是该海域经向物质和能量交换的重要通道。基于NEMO模式分别对TC、STC和DTC经向流量的季节变化特征和机理进行了模拟研究,驱动场增强和减弱情况下的敏感性试验表明,风应力是TC和STC南、北向输送以及DTC南向输送季节变化的主要影响因素,而热通量和淡水通量的影响较小;风应力和热盐通量季节变化情况下的敏感性试验表明,TC和STC的南、北向输送以及DTC的南向输送主要是由风应力的季节振荡引起的,而热通量和淡水通量的影响较小。  相似文献   

4.
利用观测资料和理论模型,研究了孟加拉湾海表面高度的季节循环.结果表明,局地风应力旋度驱动的斜压Rossby波是孟加拉湾海表高度季节循环的主要控制因子,而孟加拉湾海底地形分布也影响了海表面高度的季节循环.受风应力旋度驱动的斜压Rossby波在短时间内就可以穿越孟加拉湾海盆,使得海洋温跃层在短时间内完成了对Rossby波的响应,保证了上层海洋满足准静止的Sverdrup平衡.在夏季(冬季)西南(东北)季风驱动下,上层海洋分别在孟加拉湾北部和南部形成气旋(反气旋)式和反气旋(气旋)式环流.  相似文献   

5.
本文利用2011年8月至2014年3月Aquarius卫星盐度产品结合Argo等实测盐度资料,探讨了孟加拉湾海表盐度的季节及年际变化特征。结果显示,Aquarius与Argo盐度呈显著线性正相关,总体较Argo盐度值低,偏差为-0.13,其中在孟加拉湾北部海域负偏差值比南部海域更大,分别为-0.28和-0.10。Aquarius卫星与Argo浮标在表层盐度观测深度上的差别是造成此系统偏差的主因。Aquarius盐度资料清晰显示了孟加拉湾海表盐度具有明显的季节变化特征,包括阿拉伯海高盐水的入侵引起湾南部海域盐度的变化以及湾北部淡水羽分布范围的季节性迁移等主要特征。此外,分析还揭示了2011(2012)年春季整个湾内出现异常高盐(低盐)现象。研究表明,2010(2011)年湾北部夏季降雨减少(增加)导致该海域海水盐度偏高(偏低),并通过表层环流向南输运引起次年春季湾内表层盐度出现异常高盐(低盐)现象,春季风应力旋度正(负)距平通过影响盐度垂直混合过程对同期表层盐度异常高盐(低盐)变化也有影响。  相似文献   

6.
钟慎雷  王铮  袁东亮 《海洋科学》2013,37(12):68-75
基于缺口处的西边界流流态存在迟滞回归现象, 使用1.5 层约化重力浅水模式, 研究了受山脉与地形影响的局地风急流对西边界流流径的影响。结果显示, 在西边界流从跨越态向入侵态转变的临界状态, 局地的西向和南向风应力能够使西边界流向入侵态转变, 局地的东向和北向风应力不能使其发生转变; 在西边界流从入侵态向跨越态转变的临界状态, 除西风以外的风应力都能使西边界流向跨越态转变。此外数值实验还表明风应力旋度的作用强于风应力大小的作用。  相似文献   

7.
热带东印度洋表层环流季节变化特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用近20年的卫星遥感海面绝对动力高度(Absolute Dynamic Topography,ADT)数据、表层流数据及Argos表面漂流浮标数据等研究了热带东印度洋表层环流的季节变化特征。分析结果显示,热带东印度洋表层环流的变化与季风演替基本同步,赤道以北海域环流季节变化特征甚为显著。与此大尺度环流年循环同步,孟加拉湾湾口环流也相应变化:湾口东部在5~9月为南向流,一直延伸至苏门答腊岛外海,其他月份,从湾口东部至整个苏门答腊岛外海(4°S以北)为北向流;湾口西部经向流的变化大体与东部相反。Argos漂流浮标轨迹进一步揭示了湾内外各季节水交换路径:西南季风期,源自阿拉伯海及印度半岛南部海域的漂流浮标主要通过西南季风漂流由湾口西侧进入湾内,湾内的漂流浮标通过湾口东侧沿着苏门答腊岛进入赤道印度洋;东北季风期,漂流浮标进出湾口的途径大体与西南季风期相反。本研究还表明,季风海流及赤道急流的纬向流速季节变化最大,而经向流速的季节方差最大的则为东印度沿岸流及拉克沙群岛高压(拉克沙群岛低压)。  相似文献   

8.
基于NCEP CFSV2再分析风场驱动SWAN模型,对南海至北部湾为期1年的海浪逐时过程进行了数值模拟,利用Jason-2卫星和近岸浮标整年观测数据检验了模拟效果。在此基础上,评估了模型空间网格尺度对北部湾内波浪模拟的影响,分析了波浪的季节变化特征,辨析了局地风和南海传入浪对海湾波浪的驱动贡献。研究显示:(1)较Jason-2卫星观测值,有效波高模拟值的均方根误差和分散系数分别约为0.4 m和0.2;较北部湾湾顶近岸浮标逐时观测值,有效波高的均方根误差和分散系数分别约为0.2 m和0.4,平均波周期的均方根误差和分散系数分别约为0.6 s和0.2,平均波向的均方根误差约为30°;(2)空间网格分辨率为12'×12'的模型对北部湾20 m以深开敞海域波浪的模拟效果良好,模拟值较2'×2'模型的平均相对偏差在10%以下;(3)北部湾冬季盛行东北向波,夏季盛行偏南向浪,季风转换期盛行东南向浪,全年波浪在季风期强于季风转换期,冬季最强、冬夏转换期最弱;(4)局地风对北部湾波浪的驱动贡献自湾口向湾内增强,季风期强于季风转换期;南海传入浪的驱动贡献自湾口向湾内减弱,季风转换期强于季风期;海湾中部和北部的波浪以局地风为主控因素,海南岛南部和东部水域以传入浪的影响为主,海南岛西南水域受局地风和传入浪的共同控制。  相似文献   

9.
利用中国科学院"实验1"号调查船2010~2012年东印度洋3个航次的走航断面观测数据,分析了春季孟加拉湾南部和赤道东印度洋上层海洋的水文结构特征,同时结合卫星遥感资料和世界海洋图集2009(world ocean atlas 2009,WOA09)气候态温、盐资料,探讨了孟加拉湾南部海水经向地转输运的变化以及温跃层的波动。结果表明,在3~5月份,即印度洋冬季风向夏季风转换期间,赤道西风的爆发成为这一海域最关键的驱动力,将阿拉伯海的高盐水向东输运,使赤道纬向压强梯度力转为西向,减弱了赤道潜流并引起向北的经向地转输运。在孟加拉湾湾口,赤道的波动强迫导致了经向输运由南向转为北向,来自阿拉伯海的高盐水与孟加拉湾的低盐水在此汇集,形成了明显的盐度梯度;波动强迫还使得孟加拉湾湾口呈现出一个向西移动并减弱的气旋涡流场。在波动和表层盐度差异的影响下,湾口温跃层维持着向西下倾斜的状态,即使是在印度洋东岸海水堆积时,也没有显示出如赤道断面温跃层那般的大幅度加深。  相似文献   

10.
北太平洋经向翻转环流(NPMOC)是北太平洋所有经向翻转环流圈的总称,拥有5个环流圈结构.其中,热带环流圈(TC)、副热带环流圈(STC)和深层热带环流圈(DTC)位于北太平洋热带-副热带海域,是该海域间经向物质和能量交换的重要通道.主要运用NEMO模式对这3个经向翻转环流圈的年际变化特征和机理进行了研究.结果表明,TC、STC和DTC的经向流量都具有显著的年际变化特征:在El Nio期间,TC的南、北向流量均减弱,STC的北向流量增强、南向流量减弱,DTC的南向流量减弱;而在La Nia期间则相反.敏感性试验表明,在风应力强迫下得到的TC、STC南、北向流量和DTC南向流量的年际变化特征都很显著,并与在风应力、热通量和淡水通量共同强迫下得到的结果非常一致;而仅在热通量和淡水通量的强迫下,各分支流量的年际变化均较小.由此可见,风场驱动是引起北太平洋经向翻转环流年际变化的主要驱动因素,而热通量和淡水通量的影响却较小.  相似文献   

11.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   

12.
孟加拉湾上层环流研究综述   总被引:2,自引:0,他引:2  
邱云  李立 《海洋科学进展》2006,24(4):593-603
综述了孟加拉湾上层环流研究的主要成果并指出,研究海区环流与季风转换不完全同步。在西南季风期间,南、北海区各有一气旋式环流;在秋季季风过渡期间,出现海湾尺度的气旋式环流;在东北季风期间,气旋式环流减弱北移,南部则为一反气旋式环流控制;春季与秋季的情形相反,整个湾出现一海湾尺度的反气旋式环流。研究海区环流的变异主要受季风、赤道远地作用和浮力通量等复杂外源作用的影响。东印度沿岸流的季节变化与季风转换也不同步,局地风、内部Ekman抽吸、远地沿岸风及赤道远地作用的影响对沿岸流周年变化有重要作用。孟加拉湾上层环流年际变化显著,此年际变化主要受赤道风场的影响。  相似文献   

13.
本研究利用Argo温盐、Aquarius遥感盐度等资料,研究了阿拉伯海高盐水入侵孟加拉湾的主要路径及季节变化机制.分析显示阿拉伯海高盐水入侵孟加拉湾存在3种类型,即夏季型、冬季型和春季型.夏季型入侵发生在湾口西部,入侵时间为7—10月,净体积输送达1.53 Sv.冬季型(12月至次年1月)和春季型(3—5月)阿拉伯海高...  相似文献   

14.
The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1 400-year spin up results of the MOM4p1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAA World Ocean Atlas(1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward transport at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63×106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow(ITF) and joins the Indian Ocean equatorial current, which subsequently flows out southward from the Mozambique Channel, with its majority superimposed on the Antarctic Circumpolar Current(ACC). This anti-cyclonic circulation around Australia has a strength of 11×106 m3/s according to the model-produced result. The atmospheric fresh water transport, known as P-E+R(precipitation minus evaporation plus runoff), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including: the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer; semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage; and annual transport variability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic; heat storage in January and heat deficit in July in the Antarctic circumpolar current regime(ACCR); and intensified heat transport of the ITF in July. The volume transport of the ITF is synchronous with the volume transport through the southern Indo-Pacific sections, but the year-long southward heat transport of the ITF is out of phase with the heat transport through the equatorial Pacific, which is northward before May and southward after May. This clarifies the majority of the ITF originating from the southern Pacific Ocean.  相似文献   

15.
刘雨  徐康  王卫强  谢强  王玉国 《海洋与湖沼》2021,52(5):1104-1114
上层经向翻转环流(shallow meridional overturning circulation, SMOC)主导热带-副热带上层海洋水体交换,对海洋物质输运和热量交换具有重要意义。基于7套海洋再分析数据产品,本文主要探讨了印度洋SMOC的冬夏季节变化及其差异的原因。结果显示,印度洋SMOC主要由南半球副热带环流圈(southern subtropical cell, SSTC)和跨赤道环流(cross-equatorial cell, CEC)组成,并且具有显著的季节差异。夏季风期间, SSTC和CEC均为表层南向输运,表层以下北向输运的逆时针环流结构。冬季风盛行时, SSTC仍维持逆时针结构,但环流中心南移且深度加深,强度弱于夏季;然而, CEC却转向为表层北向输运,表层以下向南输运的顺时针环流结构,其环流中心位置与夏季接近,环流强度与夏季相当。这种印度洋SMOC冬夏结构差异究其原因主要由风生环流主导, CEC冬夏季节环流方向反转是北印度洋冬夏季风转向的结果,而南印度洋信风的季节性位移和强度变化是SSTC强度和位置季节差异的主要原因。  相似文献   

16.
The surface circulation in the western equatorial Pacific Ocean is investigated with the aim of describing intra-annual variations near Palau (134°30′ E, 7°30′ N). In situ data and model output from the Ocean Surface Currents Analysis—Real-time, TRIangle Trans-Ocean buoy Network, Naval Research Laboratory Layered Ocean Model and the Joint Archive for Shipboard ADCP are examined and compared. Known major currents and eddies of the western equatorial Pacific are observed and discussed, and previously undocumented features are identified and named (Palau Eddy, Caroline Eddy, Micronesian Eddy). The circulation at Palau follows a seasonal variation aligned with that of the Asian monsoon (December–April; July–October) and is driven by the major circulation features. From December to April, currents around Palau are generally directed northward with speeds of approximately 20 cm/s, influenced by the North Equatorial Counter-Current and the Mindanao Eddy. The current direction turns slightly clockwise through this boreal winter period, due to the northern migration of the Mindanao Eddy. During April–May, the current west of Palau is reduced to 15 cm/s as the Mindanao Eddy weakens. East of Palau, a cyclonic eddy (Palau Eddy) forms producing southward flow of around 25 cm/s. The flow during the period July to September is disordered with no influence from major circulation features. The current is generally northward west of Palau and southward to the east, each with speeds on the order of 5 cm/s. During October, as the Palau Eddy reforms, the southward current to the east of Palau increases to 15 cm/s. During November, the circulation transitions to the north-directed winter regime.  相似文献   

17.
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data.The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether.The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N,respectively, while the DTC and the subpolar cell are a weaker ...  相似文献   

18.
The statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean are investigated by adopting multi-sensor satellite data from 1993 to 2019. In the Arabian Sea(AS), seasonal variation of eddy characteristics is remarkable, while the intraseasonal variability caused by planetary waves is crucial in the Bay of Bengal(BOB). Seasonal variation of the eddy kinetic energy(EKE) is distinct along the west boundary of AS,especially in the Somali Current region. In the BOB, lar...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号