首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
韩晓鹏  宋金宝 《海洋科学》2015,39(12):150-156
基于Longuest-Higgins(1963)非线性海浪模型,在有限水深且存在均匀背景流的条件下,根据Song(2006)给出的波面位移二阶表达式,采用Combi海浪频谱计算了海表面定点波面位移时间序列和波面位移概率统计分布。分析了波面位移统计分布随风速、水深、反波龄和均匀背景流的变化特征和规律以及不同海况条件下二阶非线性项对波面位移统计分布的影响。结果表明:二阶非线性项使波面位移分布偏离正态分布,二阶非线性作用受风速、水深、反波龄和均匀背景流的影响。风速增大、水深降低、反波龄减小或者均匀背景流和风速传播方向相反均使波面位移二阶非线性项的作用加强,无因次波面位移概率密度分布的偏度和峰度随之增大,反之则二阶非线性项作用减弱。当均匀背景流和风速相同时,虽然使非线性项的作用减弱,但平均波面位移反而比静止水平面降低。当均匀背景流和风速相反时,虽然使非线性作用增强,但平均波面位移反而趋于静止水平面。得到如下结论:二阶非线性项对于波面位移有显著影响,数值模拟波面位移需要增加二阶非线性项。通过以上研究,提高了数值模拟波面位移的准确性,而波面位移是海浪最基本的特征量,从而增强了海浪模拟和预报的准确性,对海洋工程、海–气相互作用、上层海洋动力学等具有重要意义。  相似文献   

2.
《Coastal Engineering》2004,50(4):169-179
Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied.  相似文献   

3.
- The spectral form of wind waves is investigated based on the ocean wave data observed at three nearshore stations of Taiwan. In this study, the generalized forms of Pierson-Moskowitz spectrum and JONSWAP spectrum are used to describe the local wave spectrum by selecting suitable spectral form parameters. It is shown that, at a specific site, the similarity of wave spectral form exists. Thus it is possible to use a representative spectral form for a given nearshore region to describe the wave spectrum at this nearshore. On the other hand, the effects of relative water depth on spectral form are examined. The feasibility of two spectral models in finite water depth is evaluated by using the same field wave data.  相似文献   

4.
5.
When the wave spectrum is sufficiently narrow-banded and the wave steepness is sufficiently high, the modulational instability can take place and waves can be higher than expected from second-order wave theory. In order to investigate these effects on the statistical distribution of long-crested, deep water waves, direct numerical simulations of the Euler equations have been performed. Results show that, for a typical design spectral shape, both the upper and lower tails of the probability density function for the surface elevation significantly deviate from the commonly used second-order wave theory. In this respect, the crest elevation is observed to increase up to 18% at low probability levels. It would furthermore be expected that wave troughs become shallower due to nonlinear effects. Nonetheless, the numerical simulations show that the trough depressions tend to be deeper than in second-order theory.  相似文献   

6.
In the design process of berm breakwaters, their front slope recession has an inevitable rule in large number of model tests, and this parameter being studied. This research draws its data from Moghim's and Shekari's experiment results. These experiments consist of two different 2D model tests in two wave flumes, in which the berm recession to different sea state and structural parameters have been studied. Irregular waves with a JONSWAP spectrum were used in both test series. A total of 412 test results were used to cover the impact of sea state conditions such as wave height, wave period, storm duration and water depth at the toe of the structure, and structural parameters such as berm elevation from still water level, berm width and stone diameter on berm recession parameters. In this paper, a new set of equations for berm recession is derived using the M5' model tree as a machine learning approach. A comparison is made between the estimations by the new formula and the formulae recently given by other researchers to show the preference of new M5' approach.  相似文献   

7.
利用大型水槽设计了在由深水到近岸不同坡度处海浪在变浅作用下诱导产生的长周期重力波的实验。正态随机海浪在深水生成并沿斜坡向浅水传播,记录了不同水深处波面高度随时间的变化过程并进行统计分析和谱分析。实验数据分析结果表明,长周期重力波的能量随着水深的变浅而增高,其谱锋频率位于0.2~0.3fp附近,这里fp是深水正态海浪过程的谱峰频率。长周期重力波的能量与入射波的能量比与波面高度分布的偏度密切相关。进一步分析了两种波动的能量谱峰值比和波面高度分布偏度的相关关系,获得了经验关系,为预测近岸浅水长周期重力波提供了科学依据。  相似文献   

8.
In this paper further mathematical analysis on "correlation transfer technique" by Polge el al. is carried out, the tenable conditions and the extent of suitability for the said method are proved as well. In consideration of the influence of skewness of the sea surface elevation on spectral shape, a "quasi-correlation transfer techique" is developed by the modification of the simulated target spectrum. Meanwhile, the numerical simulation of the non-Gaussian process of wind waves is carried out in view of the two conditions of the surface elevation probability distribution and the spectrum. By using its simulated results, the influence of skewness of the sea surface elevation on two parameters in the distribution of wave heights (which had been fitted by using the Weibull distribution) is analysed. The "quasi- correlation tranfer technique" is verified and compared with the selection wave data observed in the Jiaozhou Bay in the period of 1980 to 1981. Results make clear (hat, as far as the statistical d  相似文献   

9.
未破碎变浅随机海浪的波面高度概率分布   总被引:1,自引:0,他引:1  
利用青岛海洋大学物理海洋实验室现代化的大型水槽,设计进行了多种海浪强度下,由深水传入近岸不同坡度水底上的变浅随机海浪的实验.依据实验资料分析结果表明,对变浅非正态海浪过程而言,其波面高度分布取Gram-Charlier级数前3项,所得结果与实验分布符合良好.该分布中σ、λ3、λ43个参量是测点水深和波浪强度的函数,并获得了与无因次参量Hs/d之间的经验关系,为预测变浅随机海浪的波面高度分布提供了可能.  相似文献   

10.
Statistical analysis of nonlinear random waves is important in coastal and ocean engineering. One approach for modeling nonlinear waves is second-order random wave theory, which involves sum- and difference-frequency interactions between wave components. The probability distribution of the non-Gaussian surface elevation can be solved using a technique developed by Kac and Siegert [21]. The wave field can be significantly modified by wave diffraction due to a structure, and the nonlinear diffracted wave elevation can be of interest in certain applications, such as the airgap prediction for an offshore structure. This paper investigates the wave statistics due to second-order diffraction, motivated by the scarcity of prior research. The crossing rate approach is used to evaluate the extreme wave elevation over a specified duration. The application is a bottom-supported cylindrical structure, for which semi-analytical solutions for the second-order transfer functions are available. A new efficient statistical method is developed to allow the distribution of the diffracted wave elevation to be obtained exactly, accounting for the statistical dependency between the linear, sum-frequency and difference-frequency components. Moreover, refinements are proposed to improve the efficiency for computing the free surface integral. The case study yields insights into the problem. In particular, the second-order nonlinearity is found to significantly amplify the extreme wave elevation, especially in the upstream region; conversely, the extreme elevation at an oblique location downstream is attenuated due to sheltering effects. The statistical dependency between the linear and sum-frequency components is also shown to be important for the extreme wave statistics.  相似文献   

11.
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.  相似文献   

12.
-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection characteristics in the far field. A numerical method-simple Green's function technique-for calculating the second-order diffraction potential in the inner region is also described. Numerical results are provided for the second-order wave forces on a semi-submerged cylinder. It is found that the contribution of second-order diffraction potential to second-order wave forces is important. The effect of water depth and submerged depth on the wave force is also discussed.  相似文献   

13.
搭建了一套水下录音记录系统,在复杂浅海环境进行了水声数据采集实验;对于水声采集数据进行了距离、频率谱分析,利用MIT开发的声学计算程序OASES针对声场进行了仿真分析。通过模拟结果和实测结果的比较,优化调整仿真程序的环境参数,分析发现影响声场分布的主要因素为沉积层压缩波声速与声源深度。通过这种方式,优化了仿真软件的环境参数,初步建立了比较准确的浅海水声环境仿真模型,取得了预期实验效果。  相似文献   

14.
严开  邹志利  马良 《海洋工程》2018,36(2):38-46
为了研究真实海洋表面马蹄波特性以及对建筑物的作用,通过物理模型实验研究了马蹄波的波形特征参数以及马蹄波对圆柱体的作用。实验中通过对浪高仪采集的波面升高时间历程曲线进行分析得出了不同水深情况下马蹄波的垂向几何特征,并通过快速傅里叶变换得出了马蹄波波幅谱的特征,研究了马蹄波各组成波波幅沿空间的变化从而得出了圆柱存在对马蹄波演化的影响,同时给出马蹄波绕射形成的波面分布和不同频率谐波在圆柱周围的分布,讨论了马蹄波不同于Stokes波对圆柱作用的特征。结果表明,马蹄波波形受水深影响较大,水深越浅,马蹄波的波面形状越接近椭圆余弦波。圆柱体的存在干扰了马蹄波不稳定的增长,使其在接近圆柱时呈下降趋势,导致不稳定幅值最大值的位置提前并且出现在偏离圆柱迎浪点的侧表面,从而使圆柱受到侧向力的作用。  相似文献   

15.
Jin-Bao Song   《Ocean Engineering》2006,33(17-18):2435-2453
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave–wave and wave–current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan–Pierson–Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied.  相似文献   

16.
The paper examines the variability of wave overtopping parameters predicted by numerical models based on non-linear shallow water equations, due to the boundary conditions obtained from wave energy density spectra. Free surface elevation time series at the boundary are generated using the principle of linear superposition of the spectral components. The components' phases are assumed to be random, making it possible to generate an infinite number of offshore boundary conditions from only one spectrum.A reference case was provided by carrying out overtopping tests on a simple concrete structure in a wave flume. Numerical tests using the measured free surface elevation at the toe of the structure were carried out. Three parameters were analysed throughout the paper: the overtopping discharge, the probability of overtopping and the maximum overtopping volume. These showed very good agreement between the numerical solver prediction and the overtopping measurements. Subsequently, the measured spectra at the toe were used to generate a population of reconstructed offshore boundary time series for each test, following a Monte Carlo approach. A sensitivity analysis determined that 500 tests were suitable to perform a statistical analysis on the predicted overtopping parameters. Results of these tests show that the variability in the predicted parameters is higher for the smaller number of overtopping waves in the modelled range and decreases significantly as overtopping becomes more frequent. The characteristics of the distributions of the predictions have been studied. The average value of the three parameters has been compared with the measurements. Although the accuracy is lower than that achieved by the model when the measured time series are used at the boundary, the prediction is still fairly accurate above all for the highest overtopping discharges. The distribution of the modelled probability of overtopping was found to follow a normal distribution, while the maximum value follows a GEV one. The overtopping discharge shows a more complex behaviour, values in the middle of the tested range follow a Weibull distribution, while a normal distribution describes the top end of the range better.Results indicate that when the probability of overtopping is smaller than 5%, a sensitivity analysis on the seeding of the offshore boundary conditions is recommended.  相似文献   

17.
Berm breakwaters are rubble mound structures in which the seaward slope of the initial profile may be reshaped to become more stable under severe wave attack. The stones in the seaward slope move from the initial slope to an equilibrium profile. A 2D experimental study has been carried out in a wave flume at a hydraulic laboratory of Tarbiat Modares University to study the effects of sea state and structural parameters on the reshaped profile parameters of such breakwaters. A series of 287 tests have been performed to cover the effect of various sea state conditions such as wave height, wave period, number of waves and water depth at the toe of the structure, and structural parameters such as berm width, berm elevation above still water level and armor stone size. All the tests have been done employing irregular waves with a JONSWAP spectrum. In this paper, first the reshaped profiles are schematized, and then the key parameters of the reshaped seaward profiles such as step height, step length and depth of intersection point of initial and reshaped profile are investigated, using results of this experimental work. Eventually, formulae that include some sea state and structural parameters are derived for estimation of the reshaped profile parameters. To assess the validity of the proposed formulae, comparisons are made between the estimated parameters of reshaped profiles by these formulae and earlier formulae given by other researchers. The comparisons show that the estimation procedure foretells reshaping parameters well and with less scatter according to the present data and also other experimental results within the range of parameters tested.  相似文献   

18.
Current velocity profiles in the presence of non-breaking waves on a horizontal bottom are studied. Particular consideration is given to the derivations of measured current profiles from the standard logarithmic profiles near the mean water surface. The deviations are found to be due mainly to the wave-induced second-order stress which was generally neglected in the former models. The available experimental data indicate that the wave-induced second-order stress is a linear function of elevation and depends on the wave parameters, the current strength and the angle between the waves and the current. A semi-empirical model is developed and gives good agreements with experimental measurements of current profiles near the mean water surface.  相似文献   

19.
The wave crest height qualification checks are required during the wave calibration before the model test in wave basin. However, the reliable criteria of nonlinear wave crest probability distribution in 3-h duration (full-scale) has not been well established yet. We investigate wave crest-height statistics of long-crested nonlinear wave fields using high-order spectral (HOS) method, which can take the effects of both second-order bound waves and third-order free waves into account. The energy dissipation effects due to wave breaking were included by employing an eddy viscosity model. Sensitivity analyses to the wave breaking onset criterion have been performed. Validation is provided by comparing the obtained numerical results with the available calibration test data. Based on extensive and direct numerical simulations, semi-empirical single realization distributions for wave calibration have been developed through 3-parameter Weibull fitting and systematic regression analyses. Particular attention has been paid to the tail of upper bound of wave crest distributions. The effects of wave steepness and water depth on the maximum wave crest height in 3-h duration have been examined. It is found that with the increase of wave steepness, the extreme wave crest height increases until it reaches a critical value. In addition, for the scale water depth kph < 1.36, the maximum crest height decreases as the water depth increases, while in the opposite case the maximum crest height increases as the water depth increases. Moreover, it is confirmed that that the fourth-order nonlinearity does not have significant effects on the distribution of the wave crest height.  相似文献   

20.
《Ocean Engineering》1999,26(5):401-430
The definition and subsequent use of dimensional and dimensionless parameters to characterize various nonlinear aspects of ocean surface waves has again become a matter of great interest to the offshore community. The desire to ascertain whether laboratory simulations are adequately representing the surface waves found in the oceans and the concern over the mechanisms behind platform response phenomena, like ringing, has driven this resurgence of interest. This paper presents a depth independent characterization of single design waves, from which improved estimates of localized wave crest front and back slopes follow that are consistent with discrete time series analysis. Characterization of the nature of the entire wave data recorded requires a combination of spectral parameters and probabilistic models in addition to those used in the design wave characterization. A new expression for the direct evaluation of the kurtosis from knowledge of the spectral bandwidth, the relationship between some of the common spectral parameters, and some modified spectral parameters are presented and discussed. Three illustrative examples are presented. The first example provides a detailed examination of wave data measured from a series of random amplitude and random phase tests in a large model basin. The second presents estimates of the various parameters for the Pierson-Moskowitz and Wallops wave spectrum models. The third example investigates the use of the spectral peakedness ratio for comparing data with selected wave spectrum models. The examples illustrate how the formulae can provide a comprehensive local and global parametric characterization of surface wave elevation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号