首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于潜器水下状态的平衡方程,建立了潜器运动模型.通过对水锤压力的数值仿真计算,建立了潜器航行体发射时的运动控制模型.根据这一数学模型,计算分析了潜器在完整火箭发射后效(发射冲击与完整的水锤效应)作用下的运动响应和运动控制.结果表明:发射单枚航行体对潜器运动姿态有较长时间的影响,潜器的初始速度越大,影响程度越小,影响时间...  相似文献   

2.
为防止水下航行体攻击水面舰艇,提高水面舰艇的防御和生存能力,根据尾流自导水下航行体的攻击特性,在舰艇尾流后方布撒拦截网是直接、有效的对抗手段之一.为了深入了解水下航行体触网关联体的运动特性,通过建立水下航行体触网关联体仿真运动模型,得到了水下航行体在不同触网位置下关联体的运动状态变化规律.结果表明:1)水下航行体触网后...  相似文献   

3.
针对海洋测量水下拖曳设备位置确定问题,综合考虑拖缆受力、海流影响以及水下拖体的运动性质,建立了水下拖曳设备的位置计算模型,并仿真计算分析了测量船在不同航行状态下拖曳设备位置确定的规律,探讨了不同海流效应对拖曳设备位置确定的影响。仿真计算结果表明,在海洋动态环境作用下,拖缆各方向的偏移明显呈曲线形状,非简单几何运算所确定。测船各方向的运动均可对水下拖体的位置在相应方向产生一定影响,而水下拖体位置的变化量小于测船拖点位置的变化量。海流对水下拖曳设备定位可造成数米的偏差,需进行相应改正。建议可考虑采取船载式ADCP实时测流辅助水下拖曳设备定位的工作模式。  相似文献   

4.
可着陆式水下机器人由于变浮力机构的设计要求,其外形与结构较之传统的水下航行器更为复杂。在设计阶段对可着陆式水下机器人进行仿真和操纵性分析具有重要意义。文中采用多体系统动力学方法分析可着陆式水下机器人动力学特性,将作用在系统各组成部分上的流体动力、推进力以及其它作用力分别计算和考虑,建立了多体动力学模型,并进行了三维空间运动仿真。该方法为具有较复杂附体结构的水下机器人设计和动力学仿真提供了有效途径。  相似文献   

5.
提供一种水下航行体控制系统数学仿真软件的设计方案,在该仿真软件平台上可以完成水下航行体控制系统数学仿真研究、水下航行体水动力参数辨识实验和实航内测数据及仿真实验结果三维可视化显示。详细设计了该软件包含的 4 大模块:水下航行体数学模型及仿真模型模块、控制算法模块、流体动力参数辨识模块和图形界面人机交互模块,并对仿真模型的配置做了简单介绍。  相似文献   

6.
掌握衡重参数对水下航行体机动特性影响对结构布局与总体方案设计极有帮助。针对铅垂面机动问题,建立了经过试验验证的回转外形航行体水下运动动力学模型,获得了不同衡重参数匹配关系下的机动弹道特性,分析了衡重参数及控制策略对机动性能的影响规律。研究发现,综合考虑机动方向等因素利用重力矩增大可用舵角是改善机动特性的关键。对铅垂面内向上机动,使质心位于浮心后方较远处,配合短时无控策略能够显著提升机动性能。  相似文献   

7.
针对适合捷联式重力仪的AUV搭载平台的选型问题,基于国内AUV实际航行数据,分析了多推进器组合、推进器和浮力舱组合、推进器和鳍舵组合等3类AUV的定深航行运动特性;推导了AUV水下航行在3个坐标轴方向上对重力仪产生的运动加速度计算公式,得到运动加速度与AUV水下6个自由度运动要素的解析表达式;基于运动加速度分析,讨论了适用于水下移动重力测量的AUV平台和推进装置设计,进行了AUV搭载平台的优选,并给出了重力仪安装位置建议;选定的AUV实验平台实施移动重力测量验证试验重复线精度达到0.42mGal,验证了搭载平台优选的有效性。  相似文献   

8.
凸体作为水下航行器表面的一种常见附体结构,其产生的涡流噪声对搭载在水下航行器上的声学仪器的信号精度有非常重要的影响。在马赫数为0.004 8条件下,采用LES-Lighthill等效声源法对三维方形凸体的流场及声场进行仿真,形象地再现了凸体周围涡旋运动变化规律,分析了涡流流动机制及辐射噪声特征。通过正交试验设计,以噪声最小为目标,优化了三维方形凸体结构参数。研究成果为水下航行器附体结构的设计提供了依据。  相似文献   

9.
针对水下滑翔机运动过程中的特点,水下滑翔机实际运动过程可以分为定常运动段和非定常运动段,对自设计的水下滑翔机原理样机建立了基于单刚体六自由度的定常运动段的数学模型并进行了数值仿真,在此基础上分别对水下滑翔机运动过程中的两种定常运动—直线定常运动和螺旋定常运动进行了分析。结论显示在直线定常运动中俯仰角和攻角随平移质量块位置的增大先变化迅速后变化缓慢。滑翔角随平移质量块位置的增大近似呈线性增大的关系。在螺旋定常运动中通过模型仿真得到螺旋运动特征参数(螺旋半径、螺旋线螺距、螺旋时间周期、速度)和状态参数(滑翔角、翻滚角、各方向速度分量、各方向角速度分量),根据最小二乘法拟合得到它们之间的关系,从而说明了螺旋运动状态是如何通过调整平移质量块移动距离,旋转质量块旋转角度和净重力等控制量而变化的。  相似文献   

10.
以水下弹性缆索为研究对象,分析了处理缆索弹性的段前弹簧模型,发展了缆索的多体有限段模型,提出弹性缆段模型,将多体运动力学和弹性力学结合起来,用于求解弹性缆索的动力学响应。对于水下缆索所受的流场力,推导了流场分布力的质心等效力系,并通过揭示水下缆索的附加质量与缆索自身惯性的本质联系,得到了包含附加质量力影响的水下弹性缆索的动力学方程。对工程实例进行了仿真研究,结果与实际情况吻合良好。  相似文献   

11.
Compared with bottom-fixed wind turbines,the supporting platform of a floating offshore wind turbine has a larger range of motion,so the gyroscopic effects of the system will be more obvious.In this paper,the mathematical analytic expression of the gyroscopic moment of a floating offshore wind turbine is derived firstly.Then,FAST software is utilized to perform a numerical analysis on the model of a spar-type horizontal axis floating offshore wind turbine,OC3-Hywind,so as to verify the correctness of the theoretical analytical formula and take an investigation on the characteristics of gyroscopic effect.It is found that the gyroscopic moment of the horizontal axis floating offshore wind turbine is essentially caused by the vector change of the rotating rotor,which may be due to the pitch or yaw motion of the floating platform or the yawing motion of the nacelle.When the rotor is rotating,the pitch motion of the platform mainly excites the gyroscopic moment in the rotor’s yaw direction,and the yaw motion of the platform largely excites the rotor’s gyroscopic moment in pitch direction,accordingly.The results show that the gyroscopic moment of the FOWT is roughly linearly related to the rotor’s inertia,the rotor speed,and the angular velocity of the platform motion.  相似文献   

12.
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.  相似文献   

13.
This paper presents an exact solution of the problem of free nonlinear rolling or pitching motion of a submerged vehicle. The nondimensional frequency-amplitude relationship of free uncoupled roll or pitch is universal, i.e. the single curve describes the behavior of any vehicle. This relationship is softening, i.e. the decreasing frequencies correspond to larger amplitudes of roll or pitch. The amplitudes of vibrations in the region of frequencies corresponding to the resonance are very sensitive to small variations of the frequency. These conclusions, i.e. the softening nonlinearity and the high sensitivity of the amplitudes to small variations of the vibration frequency are valid also for the problem of forced nonlinear roll or pitch motion of submerged vehicles.  相似文献   

14.
The authors have previously determined that the effectiveness and failure pattern of the ice cover caused by flexural-gravity waves generated by a submerged body motion near the bottom ice can greatly depend on the depth of the water area. In its turn, the presence of a ledge on the ice surface may affect a wave propagation pattern. This paper presents an experimental study of the bottom contour influence on the deflection and length of flexural-gravity waves. The authors describe a numerical model for the analysis of the deformed state of ice caused by hydrodynamic loads due to a submarine motion, taking into account the bottom contour. The experiments are carried out in the ice tank. The results of calculations and experiments are compared.  相似文献   

15.
A submerged body that moves near a free surface needs to keep its attitude and position to accomplish its missions, which are required to validate the performance of a designed controller before sea trial. Hydrodynamic maneuvering coefficients are generally obtained by experiments or computational fluid dynamics, but these coefficients suffer from uncertainty. Environmental loads such as wave excitation, current, and suction forces act on the submerged body when it moves near the free surface. Therefore, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, six-degree-of-freedom equations of motion for the submerged body are constructed. An adaptive control method based on the neural network and proportional–integral–derivative controller is used for the depth controller. Simulations are performed under various depth and environmental conditions, and the results show the effectiveness of the designed controller.  相似文献   

16.
The modeling and control of a variable liquid-column oscillator having a liquid filled U-tube with air chambers at its vertical columns are presented. As an ocean wave energy extracting device, the structure of the variable liquid-column oscillator (VLCO) is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, owing to an air spring effect caused by the dynamic pressure of air chambers, the amplitude of response of the VLCO becomes significantly amplified for a desired wave period. The governing equations for the motion of VLCO structure under wave excitation and the motion of liquid with an air spring effect caused by an air–liquid interaction are described by a series of nonlinear differential equations. A set of control parameters for extracting maximum power from various wave conditions is determined for the efficient operation of the VLCO. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the VLCO provides the most effective mode for extracting energy from the ocean wave.  相似文献   

17.
Study of a jet-propulsion method for an underwater vehicle   总被引:1,自引:0,他引:1  
This paper investigates a novel jet-propulsion method for a submerged vehicle. The approach is based on flexible-tube, eccentric rotor, Downingtown-Huber type pumps. Equations of motion are derived for a craft driven by such pumps. In order to develop general insight into the overall dynamics of the system, simulations are carried out for the simple case of horizontal straight-line motion. Results are obtained for the vehicle velocity, distance traveled, pump speed, and energy consumption. Effect of drag forces on the operation of the craft is studied. Finally, the jet-propulsion system is compared with conventional screw-type propulsors via simulation.  相似文献   

18.
姿态传感器是高精度海洋测深的必备设备。但在实际使用姿态传感器测量过程中,其相对测深换能器安装位置存在着物理偏心或空间位置偏移。在简述姿态传感器的基本原理和建立测量坐标系基础上,推导了测量船在波浪中运动造成的诱导升沉公式,数值计算分析了物理偏心产生的诱导升沉影响量级和规律,提出了减弱诱导升沉影响的方法以及姿态传感器安装应用建议。  相似文献   

19.
In this paper, a hydrodynamic model is developed to simulate the six degrees of freedom motions of the underwater remotely operated vehicle (ROV) including the umbilical cable effect. The corresponding hydrodynamic forces on the underwater vehicle are obtained by the planar motion mechanism test technique. With the relevant hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is then adopted to solve the equations of motions of the ROV and the configuration of the umbilical cable. The multi-step shooting method is also suggested to solve the two-end boundary-value problem on the umbilical cable with respect to a set of first-order ordinary differential equation system. All operation simulations for the ROV including forward moving, ascending, descending, sideward moving and turning motions can be analyzed, either with or without umbilical cable effect. The current effect is also taken into consideration. The present results reveal that the umbilical cable indeed significantly affects the motion of the ROV and should not be neglected in the simulation.  相似文献   

20.
A three-dimensional model of a two-part underwater towed system is studied. In the model, the governing equations of cables are established based on the Ablow and Schechter method. The boundary conditions for the two-part underwater towed system are derived. The six-degrees-of-freedom equations of motion for submarine simulations are adopted to predict the hydrodynamic performance of a towed vehicle. The established governing equations for the system are then solved using a central finite difference method. In this paper several algorithms are used to solve this special form of finite difference equations. The results in this paper indicate that the two-part underwater towed system improves the dynamic behavior of the towed vehicle and is an easy way to decouple the towing ship motion from the towed vehicle. Because the model uses an implicit time integration, it is stable for large time steps and is an effective algorithm for simulation of a large-scale underwater towed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号