首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
河南新县大银尖钼矿床流体包裹体研究   总被引:5,自引:0,他引:5  
大银尖钼矿床是大别钼多金属成矿带近期取得较大勘查进展的一个重要矿床,成因上与燕山晚期大银尖二长花岗岩有关。通过对主成矿期矿化石英脉流体包裹体岩相学观察和显微测温,将捕获的流体包裹体分为4类,富液相的两相水溶液包裹体、富气相的两相水溶液包裹体、含子矿物三相水溶液包裹体和含CO2的三相水溶液包裹体。数据分析显示,均一温度的峰值分别出现于280~320℃和200~220℃,盐度的峰值处于5.11%~9.98%(NaCleq)低盐度区间和36.06%~42.78%(NaCleq)的高盐度区间。密度为0.91~1.10g/cm3。激光拉曼光谱分析表明,石英中流体包裹体的组分以水蒸汽为主,伴有少量的CO2和微量N2。H和O同位素具有典型的氧同位素漂移特征,指示岩浆热液和大气降水混合作用的发生。研究结果表明,大银尖钼矿床总体上属中高温浅成热液矿床,流体混合作用可能是矿床形成的主要机制。  相似文献   

2.
 采用分阶段加热爆裂法测定了不同成因热液矿床脉石英流体包裹体的氩同位素,计算出各温度段内大气氩的相对含量,从而,总结出大气降水热液矿床、再平衡岩浆水热液矿床等成矿流体的氩同位素组成特征及其演化规律。典型的大气降水热液矿床,其成矿流体以具有高大气Ar组分(约95%-100%)为特征;再平衡岩浆水热液矿床成矿流体的Ar同位素组成特征取决于与其有成因关系的初始岩浆水的Ar同位素组成及矿源层和围岩的性质,产于古老变质岩中的,一般以具有低大气Ar组分(约6%-20%)为特征,其它的再平衡岩浆水热液矿床在主成矿温度范围内一般为50%-60%左右。  相似文献   

3.
位于大别山北麓的大银尖钼矿床是一个斑岩-矽卡岩-脉型"三位一体"的复合型矿床,利用电感耦合等离子体质谱仪对大银尖钼矿床的4件辉钼矿样品进行了Re-Os同位素年龄测定,获得Re-Os等时线年龄122.4Ma±7.2Ma,准确厘定其成矿时代为早白垩世。辉钼矿的Re同位素含量特征表明,大银尖钼矿床的成矿物质可能主要来源于下地壳。大银尖钼矿床是中国中东部伸展构造体制下岩石圈减薄的产物,属于中国东部中生代大规模金属成矿作用的一部分。  相似文献   

4.
大别山北麓钼矿找矿重大进展及其矿床地质特征研究   总被引:5,自引:0,他引:5  
在总结近年来钼矿勘查成果的基础上,综合论述了大别山钼矿床的基本特征和成矿规律.钼矿带呈北西向狭长带状展布,钼矿床的形成与燕山期中酸性浅成-超浅成小花岗岩斑岩体有关,钼矿床直接产于岩体内外接触带及其附近;矿床类型主要为斑岩型,少量矽卡岩型、热液脉型.结合Re-Os同位素精测年龄数据,确定了大别山钼矿床的成矿时代主要集中在...  相似文献   

5.
太行山北段是华北克拉通重要的多金属矿产地之一,王安镇矿集区是其中较为典型的矿集区。区内矿化类型以矽卡岩型为主,其次为斑岩型和热液脉型,矿床产于王安镇岩体内、岩体与围岩接触带及岩体附近围岩中。为深入了解其成矿规律,探讨成矿物质来源,本文在分析该矿集区成矿地质条件的基础上,对与王安镇岩体有关的典型矿床中的矿石进行了硫、铅同位素研究。结果表明,成矿热液的总硫同位素组成(δ34SΣS)在陨石硫值范围内,硫的来源单一,为深源岩浆硫;矿石铅同位素具有壳幔混合特征,且与岩体铅同位素组成较为一致。说明该矿集区成矿物质来源较深,与岩浆活动关系密切。  相似文献   

6.
刘敬秀 《地质科学》1998,33(3):349-358
采用分阶段加热爆裂法测定了不同成因热液矿床脉石英流体包裹体的氩同位素,计算出各温度段内大气氩的相对含量,从而,总结出大气降水热液矿床、再平衡岩浆水热液矿床等成矿流体的氩同位素组成特征及其演化规律。典型的大气降水热液矿床,其成矿流体以具有高大气Ar组分(约95%-100%)为特征;再平衡岩浆水热液矿床成矿流体的Ar同位素组成特征取决于与其有成因关系的初始岩浆水的Ar同位素组成及矿源层和围岩的性质,产于古老变质岩中的,一般以具有低大气Ar组分(约6%-20%)为特征,其它的再平衡岩浆水热液矿床在主成矿温度范围内一般为50%-60%左右。  相似文献   

7.
张作伦 《地质与勘探》2018,54(3):544-551
内蒙古西拉沐伦钼矿带羊场钼铜多金属矿床位于中亚-蒙古巨型造山带东段。矿体主要产于燕山晚期中粗粒黑云母二长花岗岩体中,矿体与岩体关系密切。矿石类型包括石英脉型和角砾岩型两类,矿石中金属矿物主要有辉钼矿、黄铜矿、黄铁矿、方铅矿、闪锌矿。14件金属硫化物硫同位素δ34S值变化范围集中于-1.664‰~1.293‰,平均0.516‰,极差较小,具岩浆硫特征。相对单钼矿床,羊场钼铜矿床硫化物组成更为丰富,硫同位素更接近于0‰,主要受深源岩浆制约。  相似文献   

8.
万宝源斑岩型钼矿流体包裹体及成矿物质来源研究   总被引:2,自引:0,他引:2  
宋建潮 《地质与勘探》2009,45(5):539-548
万宝源斑岩型钼矿位于辽东裂谷内,产于石柱子花岗闪长岩体及其后侵入的石英斑岩内。矿化类型可以分为浸染状、细脉充填状和石英脉状三种。为了解决该钼矿的成矿流体来源及矿床形成机制问题,我们从流体包裹体、REE、S、D-O同位素入手进行了研究。石英中的流体包裹体测试数据揭示:钼矿化可以分为三个阶段,高温阶段、中温阶段和低温阶段,以中温阶段为主。REE分析表明,成矿物质起源于花岗闪长岩体,后经分离结晶作用,最终与花岗闪长岩体表现出不同的REE配分模式;S同位素分析显示,S来源于岩体与地层,是一种混合硫;D-O同位素研究则说明,成矿流体是以岩浆水为主,后期有天水加入的混合流体。最后建立石柱子成矿系统,对石柱子花岗闪长岩内外接触带上的矿床成因进行了探讨。  相似文献   

9.
与岩浆成因相关的钼矿床成岩-成矿时差是确定矿床与岩浆岩成因关系的重要基础.本文根据收集的中国东部中生代典型钼矿床的成矿及相关岩体的同位素测年数据,详细讨论并定量厘定了钼矿的成岩-成矿时差分布特征.结果表明,钼矿成矿同步或略滞后于同源岩浆活动,中国东部整个钼矿成矿高峰的两个阶段时差介于0~10.0 Ma和0~15.0 Ma;对于单个钼矿床,其成岩-成矿时差集中在0~14.0 Ma,均值为3.9 Ma;从斑岩型钼矿床→斑岩-矽卡岩型钼矿床→矽卡岩型钼矿床→石英脉型钼矿床,成岩-成矿时差呈逐渐增加趋势,这与岩浆热液成矿过程的地质事实吻合.  相似文献   

10.
安徽金寨县沙坪沟钼铅锌矿田两期成岩成矿作用   总被引:4,自引:0,他引:4  
安徽金寨县沙坪沟钼矿床是近年来秦岭-大别成矿带发现的超大型斑岩钼矿床,已探明钼资源储量234×104t。在沙坪沟钼矿床外围发育多处铅锌矿床(点)。本文通过对外围3个铅锌矿床闪锌矿Rb-Sr同位素定年,获得120±2Ma的成矿年龄,而钼矿床成矿年龄则在115~111Ma,显示出矿田内铅锌矿床的成矿时代早于钼矿床。结合区域构造背景、控矿构造、赋矿围岩及围岩蚀变等地质特征分析,认为斑岩钼矿床和铅锌矿床为两个独立的成矿系统,热液型铅锌矿成矿系统形成早于斑岩型钼矿成矿系统。据地质勘查和同位素年代学资料,矿田岩浆岩分为两期,第一期为早白垩世早期花岗闪长岩、二长花岗岩,是热液型铅锌矿成矿系统主要赋矿围岩,第二期为早白垩世晚期石英正长岩和花岗斑岩,是斑岩型钼矿成矿系统的主要赋矿围岩。矿床C、H、O、S等稳定同位素相关研究表明热液型铅锌矿成矿系统和斑岩型钼矿成矿系统均是两期岩浆热液演化的结果。因此矿田存在两期成岩成矿作用。两个成矿系统矿石铅同位素组成不同,斑岩型钼矿成矿系统矿石铅同位素比值相对较高,变化范围大。铅锌矿床为早于斑岩钼矿床的独立成矿系统的认识合理解释了沙坪沟钼矿床为单一钼矿体,不含铅锌铜等不同于东秦岭斑岩钼矿床地质现象。区内两期成岩成矿作用均发生于晚侏罗─早白垩世构造体制转换阶段及以后伸展期。  相似文献   

11.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

12.
针对兖州煤田下组煤深部开采受奥灰高承压水威胁以及当地大型煤化工企业生产用水量大的现状,在已进行的水文地质勘探及放水试验基础上,评价奥灰富水性,并采用有限差分法进行奥灰疏水降压数值模拟研究,提出水煤共采观点。研究结果表明:兖州煤田深部奥灰水压高,合理布置水煤共采孔,可以实现奥灰水位的有效疏降,疏降中心区水位最大降深可达110 m,突水系数显著下降,提高了下组煤开采的安全性;同时可提供煤化工43200 m3/d的供水量,能达到可持续的、水资源保护性的供水效果,实现下组煤的水煤共采。  相似文献   

13.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

14.
15.
16.
Partition coefficients of Hf,Zr, and REE between zircon,apatite, and liquid   总被引:25,自引:2,他引:25  
Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10–100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite.  相似文献   

17.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

18.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

19.
The crystal/liquid partition coefficients of Lu, Hf, Ti, Mn and Ca have been measured between olivine, clinopyroxene and basaltic melt. The Ti, Mn, and Ca partition coefficients were determined at natural abundance levels. The Lu and Hf partition coefficients were determined at doping levels ranging from 0.5 to 1.5 wt% “trace element” as oxide in order to allow analysis by electron microprobe. Olivine/liquid partition coefficients for Lu, Hf, Ti, Mn, and Ca were determined at 1 bar and temperatures from 1150 to 1177° C. Clinopyroxene/liquid partition coefficients were determined for Lu, Hf, Ti, and Mn at pressures of 10, 15, and 20 kbars and temperatures from 1250 to 1290° C. The olivine/liquid partition coefficients of Hf, Lu, Ti, and Ca are small. D(Hf-ol) is zero within the analytical uncertainty. Both D(Lu-ol) and D(Mn-ol) decrease with increasing temperature, but D(Ti-ol) and D(Ca-ol) are constant over the narrow temperature range studied. The partition coefficient results are summarized below.
T°C  相似文献   

20.
Stratiform quartz-sulphide lodes in Ingladhal occur in a typical Precambrian green-stone-belt environment comprising metabasalts, tuff, chert and cherty iron-sulphide formation. Unusually high cobalt contents of metavolcanics and of sulphide minerals in orebodies suggest a consanguinity between ores and rocks. 90% of total nickel, 70% of total cobalt but only 30% of total copper in rocks occur in silicate phases and thus indicate an early separation of copper from cobalt and nickel. Unusually high non-sulphide copper in barren bedded cherts implies availability of Cu-rich solution prior to their lithification. Pyrite in sediments, in volcanics, and in orebodies is characterized by a distinctive pattern of Co-Ni distribution in each case. Partitioning of Co and Ni between coexisting sulphide pairs is complex, but gross equilibrium is indicated. Very high trace metal content of orebody pyrite sharply contrasts with very low such values in pyrite from adjacent sediments and points to a higher temperature of formation of orebodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号