首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
【研究目的】大兴安岭分布着中国东北最大的中生代火山岩带,白音高老组是该中生代火山岩重要组成部分,白音高老组的年代学及地球化学特征可为大兴安岭地区构造演化提供基础地质资料。【研究方法】本文对大兴安岭乌奴尔地区白音高老组流纹岩进行了LA-ICP-MS锆石U-Pb测年和岩石地球化学测试。【研究结果】流纹岩锆石U-Pb年龄为(127.6±1.2)Ma,属早白垩世。岩石地球化学数据显示,岩体属高硅高钾弱过铝质钙碱性系列。岩石整体富集大离子亲石元素K、Rb、Ba,亏损大离子亲石元素Sr和高场强元素Nb、P、Ti,LREE相对富集,HREE相对亏损,具有中等的富Eu异常(δEu=0.49~0.87)。【结论】综合区域地质特征及本次研究认为,大兴安岭乌奴尔地区白音高老组流纹岩的形成构造背景可能与古太平洋板块向欧亚大陆之下俯冲作用有关。  相似文献   

2.
白音高老组火山岩位于大兴安岭中段科右前旗索伦地区,主要岩性为流纹岩和流纹质晶屑凝灰岩。LA-ICP-MS锆石U-Pb同位素分析表明,3组样品的锆石U-Pb年龄分别为127±2Ma、133±2Ma和123±1Ma,即白音高老组火山岩形成于133~123Ma,为早白垩世岩浆活动的产物。岩石学和岩石地球化学特征显示,白音高老组火山岩类似于高分异的I型花岗岩,有斜长石和少量角闪石部分熔融残留。锆石的~(176)Hf/~(177)Hf值介于0.282854~0.283026之间,ε_(Hf)(t)为较高的正值,变化于+5.5~+11.5之间,Hf二阶段模式年龄(T_(DM2))为828~439Ma,表明兴安地块地壳的主体增生年代为新元古代—显生宙。通过对比东北地区(以邻区为主)同时代岩浆-构造活动,研究区内白音高老组火山岩形成于伸展构造环境,这种伸展构造环境的形成可能与古太平洋板块俯冲于欧亚大陆之下的弧后伸展环境有关。  相似文献   

3.
大兴安岭中段柴河地区白音高老组火山岩主要由流纹岩及流纹质火山碎屑岩等一套酸性火山岩组成。锆石SHIRMP U--Pb定年结果显示白音高老组火山岩的年龄为131±1 Ma,为早白垩世。地球化学测试结果显示,白音高老组火山岩属钙碱性系列,其微量元素亏损Ba、Sr、P、Ti、U元素,相对富集Rb、Th、K、Nd、Hf等元素。稀土元素配分曲线右倾,轻重稀土分馏明显,具有明显的Eu负异常。研究表明,白音高老组火山岩来源于下地壳的部分熔融,其形成的构造背景可能为蒙古—鄂霍茨克洋闭合—碰撞造山后的伸展。  相似文献   

4.
对大兴安岭北段吉源地区白音高老组流纹岩进行了年代学、地球化学测试,结果表明:LA-ICP-MS锆石U-Pb定年显示结晶年龄为(112. 84±0. 81) Ma,属早白垩世;样品具有高硅SiO_2(75. 74%~82. 87%)、富碱K_2O+Na_2O (6. 65%~8. 71%)、贫镁MgO (0. 01%~0. 03%)的特点;具有轻稀土富集,轻重稀土分馏明显[(La/Yb)N=1. 13~5. 46]及明显的Eu负异常;大离子亲石元素Rb、Th、U相对富集,亏损Ba、Sr、Ti等元素,岩石的Rb/Sr值为20. 29~74. 89,Ti/Y值为2. 52~14. 53,Nb/Ta值为12. 25~14. 7。综合研究表明,吉源地区白音高老组流纹岩成分类似于A型花岗岩,岩浆来源于下地壳基性岩石的部分熔融,可能形成于蒙古—鄂霍茨克洋闭合造山后的伸展环境。  相似文献   

5.
北山南部晚古生代构造背景争议已久,该区下二叠统普遍发育一套流纹岩系,但尚未对其开展系统的年代学与地球化学研究。本文首次对该区下二叠统5条代表性剖面中的流纹岩进行了元素地球化学、锆石U-Pb定年、全岩Sr-Nd及锆石Hf同位素等研究。U-Pb年龄介于294. 7~272. 7Ma之间,结合古生物资料,明确其喷发时代为早二叠世。该区早二叠世流纹岩大多属高钾钙碱性系列,呈钙碱-碱钙质,为准铝-过铝质岩石。岩石主量元素Si、K、Na、Fe含量高,贫Ca、Mg;微量元素富集Ga、Rb、Zr、Hf、Y,亏损Ba、Sr等;稀土元素存在明显负Eu异常;呈现高Fe OT/MgO与10000×Ga/Al比值,这些特征表明该区早二叠世流纹岩为A型流纹岩。独山剖面流纹岩锆石具有高的εHf(t)值(+11. 4~+16. 7),Hf模式年龄(tDM2)为231~573Ma;干泉剖面流纹岩锆石εHf(t)值为-8. 8~+8. 9,Hf模式年龄(tDM2)为802Ma~1961Ma;珊瑚井和俞井子剖面中的流纹岩具有低的εNd(t)值(-4. 21~-2. 92),高的(87Sr/86Sr)i值(0. 7108~0. 7223),Nd亏损地幔模式年龄(tDM)为1256~1386Ma,其锆石εHf(t)为正值(+1. 3~+17. 0)(tDM2为691~1797Ma);沙红山南剖面流纹岩εNd(t)值(-2. 00~-1. 81)较低,Nd亏损地幔模式年龄(tDM)为1207~1222Ma,锆石εHf(t)值介于+1. 6~+10. 7(tDM2为623~2576Ma)。地球化学特征表明独山剖面的流纹质岩浆为古生代新生地壳的重熔,其它剖面酸性火山岩岩浆则主要为中新元古代地壳物质熔融所形成,揭示了北山南部早二叠世岩石圈伸展减薄的地球动力学背景,结合该区构造岩浆事件序列、地层学以及沉积学等其它地质学证据,认为北山南部早二叠世为裂谷环境。  相似文献   

6.
刘春  闫峻  宋传中  李全忠  彭戈  史磊  刘晓强 《岩石学报》2012,28(10):3228-3240
长江中下游地区发育多个中生代火山盆地,自西向东依次为金牛、怀宁、庐枞、繁昌、宁芜、溧水和溧阳盆地.繁昌盆地自下而上发育中分村组、赤沙组和蝌蚪山组火山岩.中分村组下段和上段流纹岩的LA-ICPMS锆石U-Pb定年结果分别为131.2±1.1Ma和129.1±1.3Ma,和蝌蚪山组流纹岩的形成时代(130.7±1.1Ma)在误差范围内一致,表明繁昌盆地火山岩喷发持续时间较短.中分村组发育英安岩和流纹岩,赤沙组以粗安岩为主,并有少量的流纹岩,两者的SiO2含量分别为64.36% ~75.45%和63.08% ~69.75%.中分村组和赤沙组火山岩的稀土和微量元素特征基本一致,均富集轻稀土和大离子亲石元素,亏损Nd、P和Ti,其中,流纹岩表现为Eu的负异常.中分村组样品的87Sr/86 Sr(t)为0.7060 ~ 0.7074,εNd(t)为-7.91~ -8.11,赤沙组样品的87Sr/86Sr(t)为0.7073,εNd(t)为-6.62~ -6.71,和蝌蚪山组玄武岩的Sr-Nd同位素组成很相似.综合分析表明,中分村组火山岩为岩石圈地幔部分熔融的岩浆底侵形成的下地壳再次部分熔融的产物,并经过辉石、角闪石、斜长石和磷灰石的结晶分异.赤沙组粗安岩为岩石圈地幔部分熔融形成的玄武岩浆,经过橄榄石、辉石、斜长石和钛铁氧化物结晶分异形成.岩石圈地幔的部分熔融在长江中下游地区中生代火山岩中表现的最为集中,表明~ 130Ma时期为本地区的拉张峰期.  相似文献   

7.
对大兴安岭中段(阿尔山—柴河地区)白音高老组流纹岩进行了年代学、地球化学详细测试,结果表明:白音高老组流纹岩LA—ICP—MS锆石U—Pb表面年龄值为124.8~135.6 Ma,加权平均年龄值为127.0±0.5 Ma,形成时代为早白垩世;岩石主体属高硅高钾弱过铝质钙碱性系列;稀土元素配分模式图呈右倾型,轻重稀土分馏明显((La/Yb)N=3.12~10.28,平均7.57),铕弱负异常(δEu=0.18~0.73,平均0.53);大离子亲石元素Rb、Th、U相对富集,Ba、Sr明显亏损,高场强元素Zr较为富集,Ti强烈亏损。根据区域对比并结合他人研究成果,认为大兴安岭中段白音高老组流纹岩形成于早白垩世板内伸展环境,与太平洋板块俯冲关系密切。  相似文献   

8.
大兴安岭温布其地区白音高老组火山岩主要由流纹质岩屑晶屑凝灰岩和流纹岩等一系列酸性火山岩构成。LA-ICP-MS锆石U-Pb测年结果显示,研究区流纹岩形成于(131±1.5)Ma,为早白垩世;岩石地球化学研究表明,样品具有高硅SiO_2(72.43%~78.64%)、富铝Al2O3(11.48%~14.24%)、富钾K_2O(4.09%~5.05%)和低镁MgO(0.14%~0.34%)的特点;轻重稀土分馏较明显[(La/Yb)_N=8.22~13.68],Eu负异常明显(δEu=0.39~0.90);微量元素相对富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、P、Ti。~(176)Hf/~(177)Hf比值为0.282 830~0.282 983,εHf(t)为6.02~10.19。研究发现,温布其地区白音高老组火山岩岩浆来源于新元古代亏损地幔增生的年轻基性地壳的部分熔融,形成于伸展的构造环境。  相似文献   

9.
陈超  吕新彪  李杰  衮民汕 《地球科学》2020,45(12):4446-4462
为探讨大兴安岭中段塔尔气地区中酸性火山岩成因及构造背景,深化大兴安岭中生代火山岩带的对比研究,对该地区满克头鄂博组、白音高老组火山岩开展了锆石U-Pb定年、岩石地球化学及Hf同位素分析.满克头鄂博组年龄为154±2 Ma和154±3 Ma,白音高老组年龄为132±2 Ma.样品富碱质,贫镁和钙,为弱过铝质.富K、Rb、Zr、Hf,贫Eu、Ba、Sr、P、Ti等元素,具有中等到较强的Eu负异常.锆石饱和温度平均值分别为915℃和841℃,表现出A型流纹岩的特点.样品εHf(t)值分别介于+6.9~+8.4和+6.7~+7.9,tDM2分别介于624~670 Ma和611~682 Ma,指示岩浆来源于新元古代亏损地幔增生年轻地壳物质.本地区满克头鄂博组形成于蒙古-鄂霍茨克洋闭合后伸展早期阶段,白音高老组则形成于蒙古-鄂霍茨克洋闭合后岩石圈伸展及拆沉作用,同时受到太平洋板块俯冲引发的弧后伸展作用叠加的影响.   相似文献   

10.
大兴安岭北段新林区满克头鄂博组火山岩主要由流纹岩、英安岩及其凝灰岩组成,LA-ICP-MS锆石U-Pb年龄为154.5±0.68 Ma,时代为晚侏罗世.白音高老组火山岩主要由流纹岩及其凝灰岩组成,LA-ICP-MS锆石U-Pb年龄为121.12±0.5 Ma,时代为早白垩世.满克头鄂博组火山岩属于高钾钙碱性系列-钾玄质系列.稀土元素配分模式图呈右倾型,轻重稀土分馏明显,具有中等的Eu负异常.微量元素显示相对富集大离子亲石元素K、Rb、Ba、Sr和轻稀土元素,亏损高场强元素Nb、Ta、Ti、P等.白音高老组火山岩属于高钾钙碱性系列.稀土元素配分模式图呈右倾型,轻重稀土分馏明显,明显Eu负异常.微量元素显示相对富集大离子亲石元素K、Rb和轻稀土元素,Ba、Sr明显亏损,高场强元素Nb、Ta,Ti强烈亏损.结合地球化学特征和前人研究资料,认为新林区满克头鄂博组火山岩来源于下地壳玄武质岩浆的结晶分异作用,与蒙古-鄂霍次克洋闭合造山后的伸展环境有关.白音高老组火山岩源于下地壳斜长角闪岩的非理想熔融,与太平洋板块俯冲影响的伸展作用有关.  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

15.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

16.
The Kuskokwim River at Bethel, Alaska, drains a major mercury-antimony metallogenic province in its upper reaches and tributaries. Bethel (population 4000) is situated on the Kuskokwim floodplain and also draws its water supply from wells located in river-deposited sediment. A boring through overbank and floodplain sediment has provided material to establish a baseline datum for sediment-hosted heavy metals. Mercury (total), arsenic, antimony, and selenium contents were determined; aluminum was also determined and used as normalizing factor. The contents of the heavy metals were relatively constant with depth and do not reflect any potential enrichment from upstream contaminant sources.  相似文献   

17.
18.
19.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

20.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号