首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion. In this study, 25 simulation experiments on rainfall were carried out in five runoff plots. Rape (Brassica campestris) was planted on the downslope of the plots. Experiments were conducted when the vegetation coverage reached 80%. Each plot was subjected to five rainfall events differing in intensity. The results showed: (1) the runoff coefficients of overland flow and subsurface flow were less than 0.6 and 0.005, respectively; (2) the discharge of overland flow was the quadratic function of time; (3) runoff coefficient was the function of slope gradient and rain-fall intensity. When the slope gradient increased from 8.7% to 46.6%, the runoff coefficient of overland flow first increased and then decreased. The runoff coefficient reached the maximum when the slope gradient was within the range of 17.6%-36.4%; and (4) the process of subsurface flow generation included the increasing phase and reces-sion phase. Discharge was a logarithm function of time in the increasing phase, and an exponential function in the recession phase. Runoff coefficient of subsurface flow decreased first and then increased when the slope gradient varied from 8.7% to 46.6% and was not correlated with rainfall intensity.  相似文献   

2.
http://dx.doi.org/10.1016/j.gsf.2015.10.007   总被引:6,自引:0,他引:6  
Soil erosion is a serious problem arising from agricultural intensification,land degradation and other anthropogenic activities.Assessment of soil erosion is useful in planning and conservation works in a watershed or basin.Modelling can provide a quantitative and consistent approach to estimate soil erosion and sediment yield under a wide range of conditions.In the present study,the soil loss model,Revised Universal Soil Loss Equation(RUSLE) integrated with GIS has been used to estimate soil loss in the Nethravathi Basin located in the southwestern part of India.The Nethravathi Basin is a tropical coastal humid area having a drainage area of 3128 km~2 up to the gauging station.The parameters of RUSLE model were estimated using remote sensing data and the erosion probability zones were determined using GIS.The estimated rainfall erosivity,soil erodibility,topographic and crop management factors range from 2948.16 to 4711.4 MJ/mm·ha~(-1)hr~(-1)/year,0.10 to 0.44 t ha~(-1)·MJ~(-1)·mm~(-1),0 to 92,774 and 0 to 0.63 respectively.The results indicate that the estimated total annual potential soil loss of about473,339 t/yr is comparable with the measured sediment of 441,870 t/yr during the water year 2002-2003.The predicted soil erosion rate due to increase in agricultural area is about 14,673.5 t/yr.The probability zone map has been derived by the weighted overlay index method indicate that the major portion of the study area comes under low probability zone and only a small portion comes under high and very high probability zone.The results can certainly aid in implementation of soil management and conservation practices to reduce the soil erosion in the Nethravathi Basin.  相似文献   

3.
Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yangtze River Basin. In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment, rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use--forestland, farmland and grassland. Results showed that (1) within the same rainfall process, overland flow occurs first on farmland, then on grassland, and finally on forestland; (2) soil surface coverage has a great impact on the occurrence and amount of overland flow. The runoff amount can increase 2-4 times after the coverage is removed; (3) the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil, but it takes no effect on infiltration once overland flow becomes stable; (4) the runoff coefficient of the limestone soil forestland is greater than that of the yellow soil forest land, but less than that of the farmland; (5) three empirical infiltration models, including Horton' model, Kostiakov' model, and modified Kostiakov' model, were compared by using the observed results under rainfall simulation. The results showed that the Kostiakov' model performed better than both the Horton' model and modified Kostiakov model. According to the results of this research, the Kostiakov's model can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   

4.
The existing traditional methods of assessing the rates of soil loss have many limitations and are difficult to apply in the karst areas of Southwest China. Karst depressions comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of many depressions is not well understood. In this paper, the 137Cs technique was employed to investigate recent sedimentation rates in a Chinese polygonal karst depression. The results indicated that the sediment deposition rates ranged from 0.91 to 1.97 mm?a?1 in the period from 1963 to 2007, and the average sediment deposition rate and specific deposit yield of the catchment were estimated to be 1.47 mm?a?1 and 20 t?km?2?a?1, respectively. The results obtained were consistent with the local monitoring data of runoff plots, confirming the validity of the overall approach. It was shown that soil loss rates were very low in some karst areas of Southwest China. Above all, the approach appears to offer valuable potential to study surface erosion by estimating sediment deposition rates of karst depressions, rather than the assessment of complicated soil erosion in stony soils of carbonate rock slopes. In addition, the spacial distribution of surface soil and 137Cs inventories was affected remarkably by the inhomogeneous dissolution of limestone under the soil. It may be an important phenomenon which exists widely in the karst areas and is significantly different from other places.  相似文献   

5.
In recent years,more and more attention has been paid to the problem of the cryosphere changes on the Tibetan Plateau,and it has gradually become a hot issue for scholars. Known as the“water tower of Asia”,the Tibetan Plateau is the source of many major rivers in Asia. Under the combined influence of climate change and human activities,water resources on the Tibetan Plateau have undergone profound changes,especially soil water,as an important component of water resources,which plays an important role in regulating vegetation and crop growth,rainfall and runoff. However,global warming leads to the degradation of permafrost and seasonal⁃ ly frozen soil,which affects the original water cycle process and the spatial and temporal pattern of water re⁃ sources by changing the properties of soil water storage and water transport. In the Tibetan Plateau,where there are few data,it is difficult to directly study the soil water cycle process under freezing-thawing by using original data. Therefore,it is an important means to simulate the variation characteristics of soil water and temperature under freezing-thawing in seasonally frozen soil regions of the Tibetan Plateau by using coupling model of soil water and heat. Aiming at the key problem of the difference of soil temperature and moisture characteristics in typical seasonally frozen soil regions under different meteorological conditions,this paper simulated the charac⁃ teristics of soil moisture and temperature change in Maqu,Naqu(Nagqu)and Shiquanhe from 2017 to 2018 by using SHAW(Simultaneous Heat and Water)model and three soil moisture characteristic curve models. The simulation effect and variation characteristics of soil moisture and temperature under different meteorological conditions were analyzed,and the influence of soil moisture characteristic curve model on the simulation effect was studied. The results show that SHAW model can well simulate the temporal variation and vertical distribu⁃ tion of soil temperature and moisture under different meteorological conditions. The simulation effect of soil tem⁃ perature is better than that of soil moisture. The average NSE,R2 and RMSE of soil temperature are 0. 88,0. 96 and 2. 20 ℃,respectively. The mean NSE,R2 and RMSE of soil moisture are 0. 60,0. 72 and 0. 03 m3·m-3,respec⁃ tively. In terms of different meteorological conditions,the simulation effect of soil temperature in relatively dry region was significantly better than that in humid region,while the simulation effect of soil water in relatively hu⁃ mid region was significantly better than that in arid region. From different depths in soil,the simulation effect of soil temperature decreases gradually with the increase of depth,while the simulation effect of soil moisture in the middle and lower layers is better than that in the surface layer. From the view of different soil moisture character⁃ istic curve models,different soil water characteristic curve models have no significant effect on soil temperature simulation effect,but there are significant differences in soil moisture simulation effect. In addition,there are great differences and uncertainties in simulating soil temperature and moisture in different freezing-thawing stag⁃ es. With the increasing trend of climate warming,permafrost and seasonally frozen soil on the Tibetan Plateau may continue to degrade,may change the current water resources pattern,resulting in frequent extreme weather events. Therefore,from the perspective of numerical simulation,this paper verified the applicability of soil moisture and heat coupling model in soil temperature and moisture simulation under different meteorological con⁃ ditions,revealed the influence of precipitation and temperature on soil temperature and moisture simulation at different depths in seasonally frozen soil regions,and analyzed the differences in simulation effects of different soil moisture characteristic curve models. The results provide reference for the study of soil water resources vari⁃ ation under freezing-thawing conditions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

6.
Petroleum pollution in the soil is a common problem in the world. The pollution may not only cause resource waste, but also may result in environment destruction, biology subsistence crisis and human health damage gradually. Biological techniques can be used to remove and transfer petroleum contaminants in the soil. Bioremediation of petroleum-contaminated soil, which is cost-effective,safe and friendly to environment, is promising. Low temperatures and lack of available nutrients often limit the rate of microbial degradation of petroleum hydrocarbons in contaminated soils in cold region. Some scholars carried out bioremediation technology research on oily soil in cold area. Scientists attempted many measures to increase the temperature of the field. A multidisciplinary team of engineers, microbiologists and electricians has designed and installed a thermally (TIS) enhanced biopile in oil-contaminated soil in Prudhoe Bay, AK. Covered with a black plastic sheet, the pile can also improve temperature condition. Nutrient is another important factor affecting bioremediation. Because of the different constituents in the soil, the proportion of elements is different. To optimize nutrient amendments for the remediation of a long-term hydrocarbon-contaminated site at the Old Casey Station in Antarctica, results showed that the effects of nitrogen (and phosphorus) on microbial are evident. If the method of fertilizing inorganic nutrients is improper, salinity of the soil may be increased and the osmotic potential may be impacted. J.L.Walworth et al.  相似文献   

7.
Production and storage-transportation of crude oil can not only give rise to soil pollution but also destroy ecological environment. Degradation of microbes for oily soil was studied with the instnunent, Geofina Hydrocarbon Meter (GHM), by experimental analysis qualitatively and quantitatively in the paper. Analytical result showed that the crude oil could be considerably degraded by eating-oil microbes in oily soil and the number of eating-oil microbes increased while the working hours of oil-well rising. As a result, contaminated oil could be degraded more quickly by a lot of eating-oil microbes in the soil. At the same time, the degradation rate of contaminated oil increased gradually as the time went on. In addition, amount of gaseous component in the oily soil samples increased with degraded time and the microbes could selectively consume contaminated oil strongly, so biedegradation might alleviate the degree of contamination and destruction to the soil and environment in the process of oil product  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987111001034   总被引:10,自引:0,他引:10  
A comprehensive methodology that integrates Revised Universal Soil Loss Equation(RUSLE) model and Geographic Information System(GIS) techniques was adopted to determine the soil erosion vulnerability of a forested mountainous sub-watershed in Kerala,India.The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method.GIS data layers including,rainfall erosivity(R),soil erodability(K),slope length and steepness(LS),cover management (C) and conservation practice(P) factors were computed to determine their effects on average annual soil loss in the area.The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y-1 with a close relation to grass land areas,degraded forests and deciduous forests on the steep side-slopes(with high LS ).The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.  相似文献   

9.
Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the relationships between plants and phosphorus’ fractions and availability in the Loess Plateau of China. Twenty-two plant communities were surveyed and soil samples under different plant canopies were collected for the determination of soil properties and inorganic phosphorus fractionation. The results showed that Leguminosae and Lilaceae reduced pH and increased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies, while Labiatae and Rosaceae increased pH and decreased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies. The contents of Ca2P, Ca8P, Al-P and Fe-P were highly related with soil Olsen phosphorus. They were all higher in soils under Leguminosae and Lilaceae and lower in soils under Labiatae and Rosaceae. The results of this study indicate that Leguminosae and Lilaceae improved phosphorus nutrition in soils, yet Labiatae and Rosaceae impeded the improvement of phosphorus nutrition in soils under their canopies, which will be of more help to instruct vegetation restoration in the region and provide information for soil development.  相似文献   

10.
Tetrachloroethene (PCE) is biodegraded by reductive dechlorination with co-metabolism substrates under anaerobic conditions. By inoculating sludge from an anaerobic pool, a biodegradation test of PCE is conducted in the anaerobic condition. In the test, several substrates including methanol, ethanol, formate, acetate, lactate and glucose, are conducive to the conversion from PCE to TCE and 1,1-DCE. The results show the microbe can be cultivated well under the anaerobic circumstances of mixture of sewage (sludge) and soil with the index of COD after eleven days. Degradation of PCE accords with one order reaction kinetics equation. The sequence of the reaction rate constant is Kacetate 〉Kglucose 〉 Klactate 〉 Kethanol 〉 Kformate 〉 Kmethanol, and acetate is an outstanding co-metabolism substratum whose reaction rate constant is 0.6632d^-1.  相似文献   

11.
喀斯特裸坡土壤侵蚀模拟研究   总被引:4,自引:0,他引:4  
刘正堂  戴全厚  杨智 《中国岩溶》2014,33(3):356-362
文章通过人工模拟降雨试验,研究不同地下孔(裂)隙度、基岩裸露率和雨强对地表、地下产流、产沙的影响,其结果表明:(1)土壤侵蚀与地下孔(裂)隙度具有较高相关性,地表产流、产沙随地下孔(裂)隙度的增大而减小,而地下则相反;(2)坡面径流刚产生时,雨滴击溅和薄层水流冲刷,土壤细小颗粒堵塞其毛管空隙,渗漏率减小,而地表径流量增大,土壤团聚体被破坏、分散和迁移,降水与土壤渗漏率增大,地表径流量减小,雨滴击溅增强,如此循环,降水与土壤渗漏率呈波动性变化;总体而言,地表、地下悬移质均随降雨历时呈下降趋势,而地表推移质则相反,地表、地下产流量变幅较小,趋于平行;(3)地表产流、产沙量随基岩裸露率增大呈波动性变化,总体呈下降趋势;而地下产流、产沙量随基岩裸露率增大呈波动性变化,总体呈增大趋势;(4)在较小雨强30 mm/h时,地表只产生悬移质流失,没有产生推移质流失;地表、地下产流、产沙都是随雨强增大而增大;雨强由30 mm/h增大到150 mm/h,地表累积产流量为538.5 L,累积产沙量为2 393.81 g,地下累积产流量为207.8 L,累积产沙量为687.73 g,累积产沙量的递增速率比累积产流量的递增速率要大,地表产流、产沙的递增速率大于地下产流、产沙的递增速率;(5)各因子与土壤侵蚀间相关程度为:降雨历时>雨强>地下孔(裂)隙度>基岩裸露率。该实验有助于为喀斯特地区的水土流失研究、评价及制订石漠化治理措施提供理论依据。   相似文献   

12.
陕北风沙区含砾石工程堆积体坡面产流产沙试验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用室内人工模拟降雨方法,研究了陕北风沙区含砾石工程堆积体边坡的产流产沙过程。结果表明:①砾石存在改变了坡面入渗速率,径流系数受入渗速率的影响,随砾石含量的增加先线性递减后线性递增,并在10%砾石含量处存在阈值;径流系数随降雨强度的增加线性递增。②含砾石堆积体坡面流速较纯土堆积体降低,且随雨强增大,砾石延缓径流流动的作用越显著;雨强对径流流速的影响随砾石含量增加持续减弱。③土壤剥蚀率在产流24~33 min后显著增加,砾石主要对显著增加后的平均剥蚀率产生影响。④雨强1.0 mm/min时,砾石存在促进降雨侵蚀,产沙量增大;雨强大于1.0 mm/min时,砾石具有显著的减沙效应。  相似文献   

13.
人工掏挖是黄土高原地区夏闲地翻耕时广为应用的耕作方式,为探明其坡面侵蚀过程,利用三维激光扫描仪及ArcGIS软件,阐明其在人工模拟间歇降雨下坡面微地貌、侵蚀产沙及水力学参数演变规律。结果表明:①坡面侵蚀历经溅蚀-片蚀、断续细沟、连续细沟3个阶段;降雨截止时细沟平面密度、平均沟深、最大沟长和最大沟深分别增至初始的1.42倍、2.24倍、15.5倍和2.43倍。②地表糙度随降雨历时推移从1.706呈近似线性趋势减小至1.488;累积降雨量达80 mm之前,径流量、含沙量随地表糙度的减小增加缓慢,但之后随地表糙度减小增加剧烈。③降雨过程中流速呈现波动增加趋势,水流由层流快速过渡至紊流,但始终保持为缓流,水流阻力呈波动下降,且形态阻力一直居于主导地位。人工掏挖耕作坡面在雨强1.5 mm/min、降雨量80 mm以内可起到蓄水保土作用,但在连续强降雨下也更易引起细沟侵蚀。  相似文献   

14.
土壤侵蚀的中子活化示踪法研究   总被引:8,自引:1,他引:7       下载免费PDF全文
利用中子活化示踪法研究坡面土壤的侵蚀过程,发现坡面的相对侵蚀量从坡脚到坡顶随坡长的变化符合Weibull分布,其形状参数主要受降雨量、降雨历时和径流深度的影响,尺度参数主要与平均雨强、I30相关.坡面在侵蚀的同时也发生沉积,一般来说短历时高强度的降雨沉积量较小,而长历时低强度的降雨沉积量较大,某一部位侵蚀产沙的沉积量与其距离之间有y=axb的关系.坡面径流直接影响着坡面的输移比,当径流深和径流系数较高时,输移比接近于1,否则输移比降低.  相似文献   

15.
This study investigates the performance of artificial materials used for erosion control on steep slopes under high rainfall intensity. Soil samples were laid on a 300 × 100 cm platform inclined at either 35° or 45°, after which the soil was covered with various materials and subjected to a rainfall intensity of 130 mm/h for an hour. A wooden-block net covered with a jute net resulted in the greatest erosion resistance, providing 83% resistance at 35° and 76% at 45°. On the 35° slope, the artificial materials showed relatively good erosion resistance. As the slope was raised to 45°, some of the materials did not attach effectively to the soil surface. Thus, the runoff velocity increased and erosion became severe. For optimum erosion resistance, the material used to protect soil must attach to the soil surface well and have structural properties, such as a high coverage ratio to reduce the impact of rainfall on the soil and uniformly distributed transverse structures to reduce runoff energy and trap soil.  相似文献   

16.
连续降雨下不同砾石含量工程堆积体土壤侵蚀   总被引:5,自引:0,他引:5       下载免费PDF全文
为探究砾石对工程堆积体土壤侵蚀的影响与其作用机制,通过室内模拟降雨研究了连续降雨下不同砾石含量的重壤质堆积体水蚀过程。结果表明:①堆积体砾石含量增加,坡面产流历时延长,产流率线性减小,土壤剥蚀率降低;②连续降雨下,堆积体所含砾石主要通过对坡面产流历时、坡面产流率、砾石覆盖率的多重影响发挥减沙作用,主成分回归方程可表达多个变量与平均土壤剥蚀率的关系;③一定砾石含量下,堆积体坡面砾石覆盖率随表土的剥离而增大,导致土壤剥蚀率呈指数函数递减趋势,并与累积土壤侵蚀总量存在较好的函数关系。工程堆积体所含砾石对土壤侵蚀程度的削减可为生产建设项目下垫面水土保持治理提供重要参考。  相似文献   

17.
黄土丘陵区堆积体边坡对上方来水的侵蚀响应   总被引:2,自引:0,他引:2       下载免费PDF全文
为探明上方来水类型对工程堆积体高陡边坡下部冲刷侵蚀的定量影响,以神府高速公路沿线典型工程堆积体陡坡坡面(36°)为例,设计4种上方来水类型,通过野外放水冲刷试验分析了不同上方来水类型下堆积体坡面的径流侵蚀输沙过程.结果表明:①上方来水类型对堆积体坡面下部的产流影响较小,却干扰了坡面侵蚀产沙过程,造成土壤流失量增加;②径流深、单宽径流侵蚀力和水流功率均可以较好地预测堆积体边坡下部输沙模数的变化;③单宽径流侵蚀功率可以作为表征坡面尺度次径流事件中径流侵蚀力变化的指标.研究结果可为工程堆积体土壤侵蚀强度评价、侵蚀模型建立及新增水土流失防治提供参考.  相似文献   

18.
泥沙输移与坡面降雨和径流能量的关系   总被引:5,自引:1,他引:4       下载免费PDF全文
从导致土壤侵蚀的降雨和径流能量出发,提出了基于物理学原理的降雨能和径流能的概念,并采用人工模拟降雨实验,分析了泥沙输移与降雨和径流能的关系,结果显示:坡面薄层径流泥沙剥蚀量随着地表坡度、降雨能和径流能的增加而增加,雨滴击溅作用下泥沙剥蚀量远远大于无雨滴击溅作用时泥沙剥蚀量;薄层水流泥沙浓度随着坡度和降雨能的增加而增加,当坡度和降雨能一定时,泥沙浓度随着径流能的增加而减小;降雨扰动系数与降雨和径流能的比值按照对数关系增长,在相同坡度下,当降雨能一定时,降雨扰动系数随着径流能的增加而减小,当径流能一定时,降雨扰动系数随着降雨能的增加而增加。降雨能是导致泥沙剥离的本质,径流能是泥沙搬运的动力。  相似文献   

19.
上方来水对坡面降雨入渗及土壤水分再分布的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内模拟降雨试验,研究了上方来水对坡面降雨入渗、湿润锋运移以及土壤水分再分布的影响。结果表明:对于初始含水量很低的土壤,与上方无来水相比,上方来水时降雨入渗过程中入渗率有一个上升的阶段,但平均入渗率反而降低;在降雨入渗初期,由于上方来水的沿程入渗,上方来水对坡面湿润锋运移的影响较大,但随后几乎没有影响,湿润锋的运移主要与基质势梯度有关;土壤水分沿坡面呈"波浪形"分布是坡面径流的波动性、上方来水(径流)的沿程入渗以及侧向沿坡向下流等综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号