首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spinifex-textured komatiites in the Selva greenstone belt are the first unequivocal examples of komatiites in the Transition Subdomain of the Carajás Mineral Province. Outcrops of spinifex-textured komatiites, located ∼1.5 km to the south of the Carajás ridge, were discovered during regional exploration for Ni–Cu–(PGE) sulfide deposits by VALE. They are associated with a 3.8 km long unit consisting of variable types of ultramafic rocks (talc schist, serpentinite and spinifex-textured komatiite). This ultramafic unit follows the steep dipping NW–SE trending Selva greenstone belt composed mainly by quartz-chlorite schists (interpreted as metasediments) and chlorite-actinolite schists (interpreted as metabasalts). Greenschist facies metamorphic parageneses characterize all rock types in the Selva greenstone belt.The komatiitic rocks in the Selva belt comprise a sequence of flows consisting of an upper spinifex-textured layer and a lower olivine cumulate layer. Although the spinifex and cumulus textures are well preserved in the field, the primary mineralogy of the komatiites has been completely replaced by greenschist facies metamorphic minerals. Platy olivine spinifex texture, consisting of an array of roughly parallel olivine plates, and random spinifex texture, consisting of randomly oriented olivine plates, are the most common primary volcanic textures in komatiites in the Selva greenstone belt. Platy and random spinifex texture is defined by former plates of olivine replaced by serpentine with minor actinolite, chlorite and magnetite, alternating with former matrix replaced by abundant actinolite and minor chlorite, talc, serpentine, and magnetite. The domains between olivine plates in both platy and random spinifex-textured rocks contain irregular arrays of fine-grained parallel crystals, representing primary fine-grained “quench” clinopyroxene crystals replaced by actinolite.Spinifex-textured komatiites have MgO contents bracket between 22.8 and 26.9 wt.%, and cumulate textured komatiites have MgO contents up to 40.6 wt.%. When plotted vs MgO contents, most major and minor elements fall on well-defined linear trends indicating control by olivine fractionation or accumulation. Komatiites from the Selva and Seringa (located in the Rio Maria Domain) belts are Al-undepleted with Al2O3/TiO2 ratios close to 20. Results for CaO, Na2O, and REE suggest that these elements were mobile and their abundances have been modified during metasomatic alteration. REE contents in some samples are very high (up to 40 times primitive mantle values) and REE patterns vary from flat (La/YbMN ∼ 1) to highly enriched in LREE (La/YbMN up to ∼ 10). The REE mobility may be related to hydrothermal alteration associated to Cu–Au mineralization in the region.The identification of spinifex-textured komatiites close to the Carajás Basin suggests the continuation of 3.0–2.9 Ga greenstone belts of the Rio Maria Domain within the Transition Subdomain, and enlarges the area with potential to host komatiite-associated Ni–Cu–PGE deposits.  相似文献   

2.
Mineral exploration in the Neoproterozoic Goiás Magmatic Arc, central Brazil, dates back to the beginning of the 1970s. The Goiás Magmatic Arc extends for more than 1000 km in the western and northern parts of Goiás, into Tocantins, and disappears under the Phanerozoic Parnaíba Basin. Two main areas of Neoproterozoic juvenile crust, the Arenópolis and the Mara Rosa arcs, are identified. They lie in the southern and northern sectors of the Goiás Arc, respectively, and are relatively well studied.The Goiás Magmatic Arc dominantly comprises tonalitic/dioritic orthogneisses and narrow NNE-striking volcano-sedimentary belts. Recent U–Pb zircon data indicate crystallization of the tonalite protoliths in two main episodes: the older between ca. 890 and 790 Ma and the younger at 670–600 Ma. Nd isotopic data indicate the very primitive nature of the original magmas, with TDM model ages mostly within the interval between 0.9 and 1.0 Ga and Nd(T) values between +3.0 and +4.6. In the Chapada–Mara Rosa area, the supracrustal rocks form three individual NNE belts, known as the eastern, central and western belts, separated from each other by metatonalites/metadiorites.Gold and Cu–Au deposits of the Mara Rosa area occur in four main associations: (i) Au–Ag–Ba (e.g., Zacarias), which are interpreted as stratiform, disseminated volcanogenic deposits, (ii) Cu–Au (e.g., Chapada) which has been interpreted either as volcanogenic or as a porphyry-type deposit, (iii) Au-only deposits (e.g., Posse), interpreted as an epigenetic disseminated deposit controlled by a mesozonal shear zone and (iv) Au–Cu–Bi (e.g., the Mundinho occurrence), which are considered as vein-type deposits controlled by magnetite-rich diorites.The gold and Cu–Au deposits located within the Goiás Magmatic Arc can be spatially and temporally related to the magmatic evolution of a collisional belt or, in other words, to an orogenic gold deposit model. These models are based on the continuous evolution of collisional plates, which can be subdivided into four stages with distinct magmatic characteristics: (i) subduction stage, (ii) syntectonic collisional magmatism stage, (iii) post-tectonic collisional magmatism stage and (iv) post-orogenic extension stage.  相似文献   

3.
Western Ghats Belt of western Dharwar Craton is dominated by metavolcanic rocks (komatiites, high-magnesium basalts (HMBs), basalts, boninites) with occasional metagabbros. This rock-suite has undergone post-magmatic alteration processes corresponding to greenschist- to lower-amphibolite facies conditions. Komatiites are Al-depleted, characterized by lower Al2O3/TiO2 and high CaO/Al2O3. Their trace element distribution patterns suggest most of the primary geochemical compositions are preserved with minor influence of post-magmatic alteration processes and negligible crustal contamination. Chemical characteristics of Al-depleted komatiites imply their derivation from deeper upper mantle with/without garnet involvement. HMBs and basalts are differentiated based on their magnesium content. Basalts and occasionally associated gabbroic sills have similar geochemical characteristics. HMB are characterized by light rare earth element (LREE) enrichment, with significant Nb–Ta and Zr negative anomalies. Basalts and associated gabbros display tholeiitic affinity, with LREE-enriched to slightly fractionated heavy rare earth element (HREE) patterns. Boninites are distinctive in conjunction of low abundances of incompatible elements with respect to the studied komatiites. Chondrite-normalized REE patterns of boninites show relative enrichment in LREE and HREE with respect to MREE. Prominent island arc signatures are evident in HMB, basalts, boninites, and gabbros in terms of their Nb–Ta and Zr–Hf negative anomalies, LREE enrichment and HFSE depletion. It is suggested that these HMB–basalts (associated gabbros)–boninites are the products of arc magmatism. Their REE chemistry attests to a gradual transition in melting depth varying between spinel and garnet stability field in an arc regime. The close spatial association but contrasting elemental characteristics of komatiites and HMB–basalts–boninites can be explained by a plume-arc model, in which the ~3.0 Ga komatiites are considered to be the products of plume volcanism in an oceanic setting, while the HMB, basalts, boninites, and associated gabbros were emplaced in a continental margin setting around 2.8–2.7 Ga.  相似文献   

4.
Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence.On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.  相似文献   

5.
The Sula Mountains greenstone belt is the largest of the late-Archaean greenstone belts in the West African Craton. It comprises a thick (5 km) lower volcanic formation and a thinner (2 km) upper metasedimentary formation. Komatiites and basalts dominate the volcanic formation and komatiites form almost half of the succession. All the volcanic rocks are metamorphosed to amphibolite grade and have been significantly chemically altered. Two stages of alteration are recognised and are tentatively ascribed to hydrothermal alteration and later regional amphibolite facies metamorphism. Ratios of immobile trace elements and REE patterns preserve, for the most part, original igneous signatures and these are used to identify five magma types. These are: low-Ti komatiites – depleted in light REE; low-Ti komatiites – with flat REE patterns; high-Ti komatiitic basalts – with flat REE; low-Ti basalts – depleted in light REE; high-Ti basalts – with flat REE patterns. Much of the variation between the magma types can be explained in terms of different melt fractions of the mantle source, although there were two separate mantle sources one light REE depleted, the other not. The interleaving of the basalts and komatiites produced by this melting indicates that the two mantle sources were melted simultaneously. The simplest model with which to explain these complex melting processes is during melting within a rising mantle plume in which there were two different mantle compositions. The very high proportion of komatiites in the Sula Mountains relative to other greenstone belts suggests either extensive deep melting and/or the absence of a thick pre-existing crust which would have acted as a “filter” to komatiite eruption. Received: 10 February 1998 / Accepted: 28 July 1998  相似文献   

6.
7.
Geochemical data from basalts, basaltic andesites, and andesites of the Mesozoic–Cenozoic (143–44 Ma) from Livingston, Greenwich, Robert, King George, and Ardley Islands of the South Shetland archipelago, Antarctica, are presented. The rocks have variable SiO2 of approximately 46–61 wt%, Al2O3 of 15–26 wt%, and total alkali (K2O+Na2O) of 2–6 wt%. Most samples have low Mg#, Cr, and Ni, which indicates that they have undergone significant fractional crystallization from mantle-derived melts. The presence of olivine cumulatic in the samples from Livingston and Robert Islands explains some high MgO, Ni, and Cr values, whereas low Rb, Zr, and Nb values could be related to undifferentiated magmas. N-MORB-normalized trace element patterns show that South Shetland Islands volcanic rocks have a geochemical pattern similar to that found for other island arcs, with enrichment in LILE relative to HFSE and in LREE relative to HREE. The geochemistry pattern and presence of calcic plagioclase, orthopyroxene, Mg-olivine, and titanomagnetite phenocrysts suggest a source related to the subduction process. The geochemical data also suggest magma evolution from the tholeiitic to the calc-alkaline series; some samples show a transitional pattern. Samples from the South Shetland archipelago show moderate LREE/HREE ratios relative to N-MORB and OIB, depletion in Nb relative to Yb, and high Th/Yb ratios. These patterns probably reflect magma derived from a lithospheric mantle source previously modified by fluids and sediments from a subduction zone.

Resumo

Dados geoquímicos de basaltos, andesitos basálticos e andesitos mesozóicos–cenozóicos (143–44 Ma) das ilhas Livingston, Greenwich, Robert, King George e Ardley do Arquipélago Shetland do Sul, Antártica são discutidas neste artigo. As rochas tem conteúdos de SiO2 variando de 46 a 61%, Al2O3 de 15 a 26% e álcalis (K2O+Na2O) de 2 a 6%. A maior parte das amostras tem conteúdos baixos de Mg#, Cr e Ni, indicando que sofreram significante cristalização fracionada de fusões derivadas do manto. A presença de fases cumuláticas nas amostras das ilhas Livingston e Robert explicaria os elevados valores de MgO, Ni, Cr, enquanto que baixos valores de Rb, Zr e Nb observados nas amostras destas ilhas poderiam estar relacionados a magmas não diferenciados. Os padrões de elementos-traço normalizados pelo N-MORB mostram que as rochas vulcânicas das Ilhas Shetland do Sul têm padrão geoquímico similar àqueles encontrados em outros arcos de ilhas com enriquecimento em LILE em relação aos HFSE e em ETRL em relação aos ETRP. O padrão geoquímico e a ocorrência de fenocristais de plagioclásio cálcico, ortopiroxênio, olivina magnesiana e titanomagnetita sugerem origem relacionada a processos de subducção. Dados geoquímicos obtidos para as amostras do arquipélago Shetland do Sul sugerem um magma evoluindo de toleítico para cálcico-alcalino, observando-se em algumas amostras um padrão transicional. As amostras do arquipélago Shetland do Sul mostram em relação ao N-MORB e OIB, moderadas razões ETRL/ETRP, empobrecimento em Nb relativo a Yb e elevada razão Th/Yb Estes padrões refletem, provavelmente, magma derivado de uma fonte mantélica litosférica, que foi modificada por fluídos e sedimentos da zona de subducção.  相似文献   

8.
The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 < 73%, Al2O3 > 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ~ 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (~ 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20–30 times chondrite.The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns.The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation.  相似文献   

9.
The volcanic stage of the 2.7-Ga Abitibi greenstone belt, Canada, is dominated by bimodal arc magma series and komatiite-basalt sequences. The latter represents an aerially extensive oceanic plateau erupted from an anomalously hot super-plume. Komatiites define a linear array of Nb/Th vs. Nb/U, extending from Nb/Th=8-20, and Nb/U=26-58, whereas basalts plot on a separate, but overlapping, field extending to higher Th/U but lower Nb/Th values. Inter-element ratios of Th, U, Nb, and LREE of komatiites and basalts plot with Phanerozoic and modern ocean plateau basalts. Th, U, Nb, and LREE are fractionated in subduction zones into low Nb/Th, Nb/U, and Nb/LREE arc crust, and complementary high Nb/Th, Nb/U, and Nb/LREE residual slab. Accordingly, the Archean komatiite-basalt association may be explained by a plume that likely originated from the core-mantle boundary with komatiites erupted from a hot axis containing recycled oceanic crust, and basalts erupted from the plume annulus that entrained upper mantle containing recycled oceanic and continental crust. High Nb/Th and Nb/U of plume-related volcanic sequences documented in Abitibi, Yilgarn, and Baltic Archean greenstone belts suggest that the extraction and recycling of continental crust may have occurred early in the Archean.  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987112001296   总被引:1,自引:1,他引:0  
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC).  相似文献   

11.
For the first time occurrence of Ti rich Al depleted ultramafic cumulates having komatiitic signature in the northwestern fringe of Chotanagpur Gneissic Complex is presented. These rocks exhibit intrusive relationship with metasedimentary rocks and metaultramafites. Geochemically they are characterized by Mg# 79.1–91.60, high TiO2 (1.29–1.54 wt%), significantly low Al2O3/TiO2 and (Gd/Yb)n >1. Major oxides, trace and REE content suggest low degree of fractional crystallization and lesser degree of partial melting. These Al depleted komatiites are characterized by high concentration of incompatible elements than most suites of Barberton type komatiites. High Ti content suggests less degree of majorite garnet melting, leaving behind garnet in the restite. The rock shows higher Ti/Sc (190),Ti/V (22), Zr/Y (3), Zr/Sc (4), V/Sc (8), Zr/Sm (28) and Zr/Hf (47) ratios than primitive mantle and REE distribution pattern shows gentle slope from LREE to HREE in most samples pointing towards mantle metasomatism and crustal contamination during emplacement. The observed chemical characteristics indicate derivation of komatiite from an enriched mantle source and represent plume activity in an extensional tectonic regime of intracratonic setting.  相似文献   

12.
The Nellore–Khammam Schist Belt (NKSB) in South India is a Precambrian greenstone belt sited between the Eastern Ghats Mobile Belt (EGMB) to the east and the Cratonic region to the west. The belt contains amphibolites, granite gneisses and metasediments including banded iron formations. Amphibolites occurring as dykes, sills and lenses—in and around an Archaean layered complex—form the focus of the present study. The amphibolites are tholeiitic in composition and are compositionally similar to Fe-rich mafic rocks of greenstone belts elsewhere. The NKSB tholeiites show highly variable incompatible trace element abundances for similar Mg#s, relatively constant compatible element concentrations, and uniform incompatible element ratios. Chondrite-normalized REE patterns of the tholeiites range from strongly LREE depleted ((La/Yb) N = 0.19) to LREE enriched ((La/Yb) N = 6.95). Constant (La/Ce) N ratios but variable (La/Yb) N values are characteristic geochemical traits of the tholeiites; the latter has resulted in crossing REE patterns especially at the HREE segment. Even for the most LREE depleted samples, the (La/Ce) N ratios are > 1 and are similar to those of the LREE enriched samples. There is a systematic decrease in FeOt, K2O and P2O5, as well as Ce and other incompatible elements from the LREE enriched to the depleted samples without any variation in the incompatible element ratios and Mg#s. Neither batch and fractional melting, nor magma chamber processes can account for the non-correlation between the LREE enrichment and HREE concentrations. We suggest that dynamic melting of the upper mantle is responsible for these geochemical peculiarities of the NKSB tholeiites. Polybaric dynamic melting within a single mantle column with variable mineralogy is the likely mechanism for the derivation of NKSB tholeiitic melts. It is possible that the NKSB tholeiites are derived from a source with higher FeO/MgO than that of present day ridge basalts.  相似文献   

13.
The late Archaean Umburanas greenstone belt (UGB) is located in the São Francisco Craton, southwest of Bahia State, Brazil. The lower unit of UGB comprises basal komatiite lavas and tholeiitic basalts intercalated with felsic volcanic rocks. The regional crystalline basement rocks, the Gavião block, predominantly consist of granitic, granodioritic and migmatitic gneiss along with tonalite-trondhjemite-granodiorite (TTG) associations.Petrographic studies of UGB komatiites reveal characteristic spinifex igneous texture although primary mineralogy is rarely preserved. Based on textural relationships, komatiites are divided into cumulate, spinifex, and massive types. The MgO content varies in the range 31.5–40.4 wt%. The MgO–SiO2 negative correlation in komatiites suggests olivine fractionation trend. The UGB komatiites are of Al-undepleted type, characterized by Al2O3/TiO2 (21–48) ratio, enriched in highly incompatible LILE relative to moderately incompatible HFSE and distinct negative Nb, Sr and Eu anomalies. Also shows depletion of light rare earths, convex-downward rare earth patterns typically not observed in komatiites world-wide, and primitive mantle normalized Gd/Yb (1.03–1.23) and La/Sm (2.36–4.99) ratios. The negative Eu anomaly is attributed to the circulation of H2O-rich fluid, whereas the negative Nb and Sr anomalies are attributed to contamination from granitic basement rocks of the Gavião block.The UGB komatiites are most likely derived from adiabatic decompressional melting of a mantle plume. The melting took place at liquidus temperatures in the range 1572–1711 °C, which is consistent with mantle-plume origin invoked for several other komatiites in Archaean greenstone belts elsewhere. The melts were more likely generated at a depth shallower than 100 km (pressure < 2.5 GPa) where garnet was absent in the source mineralogy. Geochemical characteristics suggest contamination of primary melts with granitic basement rocks either during ascent of melt or during emplacement of magma in a continental basin setting. Greenschist to low-T amphibolite facies metamorphism at ∼2Ga may also have played a role in modifying the original komatiite petrography and composition.  相似文献   

14.
Komatiite lava flows in the Crixás greenstone belt, Goiás, Brazil, have textures and volcanic structures typical of Archean komatiites, but are geochemically most unusual. The flows are porphyritic and massive, or layered with spinifex upper parts and olivine cumulate lower parts. MgO contents range from 18 to 40%. In such lavas, only olivine (and minor chromite) can have crystallized, but neither major nor trace elements fall on olivine control lines. In MgO variation diagrams, CaO and Sr fall on lines with slopes steeper than olivine control lines; SiO2, FeO, Na2O, K2O and Y show little systematic variation; Zr shows a large variation that does not correlate with MgO; and Al2O3 decreases markedly with decreasing MgO. The aberrant behaviour is highlighted by the REE (rare earth elements) in spinifex and olivine cumulate layers from three flows: in the spinifex layers, chondrite-normalized REE patterns are hump-shaped with maxima at Nd or Sm ((La/Sm)N=0.6, (Gd/Yb)N=1.6–2.3), whereas cumulate zones in the same flows have steadily sloping patterns, with LREE enriched relative to HREE ((La/Sm)N=1.3, (Gd/Yb)N=1.4). Neither normal magmatic processes acting during emplacement of the komatiites, nor thermal erosion and wall-rock assimilation can explain these effects, and we speculate that elements commonly thought of as “immobile” (e.g. Al, Zr, REE) migrated during hydrothermal alteration or metamorphism. A Pb-Pb whole rock isochron gave an age of 2,728±140 Ma and selected Sm-Nd analyses an apparent isochron age of 2,825±98 Ma (ɛNd≈0). The Pb-Pb age is believed to be the approximate time of emplacement. Interpretation of the Sm-Nd data is complicated by the evidence of mobility of REE.  相似文献   

15.
Archean metavolcanic rocks from three greenstone belts (Suomussalmi,Kuhmo and Tipasjärvi) of eastern Finland have been subjectto a detailed geochemical study which leads to a discussionof their petrogenesis and the problem of compositional heterogeneityin the Archean mantle. Lithostratigraphically, the greenstonebelts are roughly divided into a lower and an upper volcanicsequence. Rocks of komatiitic and tholeiitic compositions arerestricted to the lower sequence, while andesitic tuffs, dacite-rhyodacitelavas and minor basalts of alkaline affinity occur in the uppersequence. All rocks from the greenstone belts have been subjectto regional metamorphism of the upper greenschist facies tothe lower garnet amphibolite facies. Consequently, the geochemicaldistinction of original magma types and the discussion of petrogenesishave relied heavily on the abundances of less mobile elements,such as TiO2, rare earth elements (REE), and some transitionmetals (e.g. Ni and Cr). Using all the possible discriminants of major element compositions,we have concluded that two general magmatic series that existin the lower volcanic sequence might be distinguished by theparameter of TiO2 content: the komatiitic series is characterizedby having TiO2 1.0 per cent and the tholeiitic series by 1.0per cent. The general series do not imply that a cogenetic relationshiplinked only by fractional crystallization exists in each series. Several magmatic types could be distinguished by their characteristicREE distribution patterns. In general, the komatiitic rocksshow flat HREE (heavy REE) and flat or depleted LREE (lightREE) patterns; the tholeiitic rocks show fractionated patternswith some degree of LREE enrichment, whilst the acidic rocksdemonstrate highly fractionated patterns with significant HREEdepletion. Model calculations indicate that: (1) the komatiiticand the tholeiitic series have no clear genetic relationship;(2) some basaltic komatiites (MgO < 12 per cent) could havebeen derived by crystal fractionation from a melt of peridotitickomatiite composition (MgO 30 per cent), but others requirevarious degrees of partial melting from the same or differentsource regions to account for their trace element abundances;(3) both partial melting and fractional crystallization haveinterplayed for the production of various rocks within the tholeiiticseries; (4) three different types of source materials are proposedfor all magmas from the lower volcanic sequence. All three typeshave the same initial HREE (about 2x chondrites) but differentLREE (from very depleted to 2x, flat) abundances; (5) volcanicrocks of the upper volcanic sequence must have originated atgreat depths where garnet remains in the residue after partialmelting and melt segregation. The recognition of the strongly LREE-depleted mantle sources,deduced from the REE patterns of peridotitic komatiites fromFinland, Canada and Rhodesia, may suggest that this depletionis a worldwide phenomenon, and that the Archean upper mantleis as heterogeneous in composition as the modern upper mantle.The causal effect of the depletion might be related to the generationof some contemporaneous LREE-enriched tholeiitic rocks, or morelikely, to contemporaneous or previous continental crust formingevents.  相似文献   

16.
Komatiites are ancient volcanic rocks, mostly over 2.7 billion years old, which formed through >30% partial melting of the mantle. This study addresses the crucial relationship between volcanology and physical manifestation of primary magmatic water content in komatiites of the Agnew-Wiluna greenstone belt, Western Australia, and documents the degassing processes that occurred during the emplacement and crystallization of these magmas. The Agnew-Wiluna greenstone belt of Western Australia contains three co-genetic komatiite units that (1) display laterally variable volcanological features, including thick cumulates and spinifex-textured units, and (2) were emplaced as both lava flows and intrusions at various locations. Komatiite sills up to 500 m thick contain widespread occurrence of hydromagmatic amphibole in orthocumulate- and mesocumulate-textured rocks, which contain ca. 40–50 wt% MgO and <3 wt% TiO2. Conversely, komatiite flows do not contain any volatile-bearing mineral phases: ~150-m-thick flows only contain vesicles, amygdales and segregation structures, whereas <5–10-m-thick flows lack any textural and petrographic evidence of primary volatile contents. The main results of this study demonstrate that komatiites from the Agnew-Wiluna greenstone belt, irrespective of their initial water content, have degassed upon emplacement, flow and crystallization. More importantly, data show that komatiite flows most likely degassed more water than komatiite intrusions. Komatiite degassing may have indirectly influenced numerous physical and chemical parameters of the water from the primordial oceans and hence indirectly contributed to the creation of a complex zonation at the interface between water and seafloor.  相似文献   

17.
Major, rare earth and transition elements, have been determinedon a selection of volcanic rocks from greenstone belts in Rhodesia(2.6 by) and South Africa (3.4 by). In Rhodesia two distinctseries can be recognized: a komatite-tholeiite series whichoccurs early in the greenstone belt evolution and apparentlygrades into a second, calc-alkaline, series at higher structurallevels. Peridotitic komatites reflect higher degrees of partialmelting than any Phanerozoic rocks so far observed and are thereforeused to place limits on the composition of their source. Atlower MgO contents they merge into low K tholeites which havesignificantly higher CeN/YbN and Rb/Sr ratios (at any MgO content)than those observed in modern ocean floor and island are environments.The calc-alkaline series is characterized by andesites whichexhibit a marked heavy REE depletion, but similar light REEand transition metal contents to the more evolved tholeiticrock types. The continuum of compositions from komatiites totholeiites and calc-alkaline andesites suggests that the bulkof greenstone belt volcanics could have been derived by differentialpartial melting, and polybaric fractionation of an essentiallyhomogeneous peridotite source. Late stage dacitic lavas andintrusions probably reflect melting of a more eclogitic sourceregion. The distinctive trace element geochemistry of Archaeanvolcanics, particularly the high Ni and low Yb values of thecalc-alkaline rocks precludes direct comparison with modernisland are associations. Rather the large decrease in liquidustemperatures (500 °C) with increasing structural heightwithin greenstone belts, coupled with the fact that most ofthe volcanics could have been derived from an essentially homogeneoussource, may suggest that greenstone belts developed in a riftingenvironment. It appears unlikely that the tholeiite/calc-alkalineassociation observed in the Archaean may be taken as an indicationof subduction at that time.  相似文献   

18.
Precambrian metaplutonic rocks of the São Gabriel block in southernmost Brazil comprise juvenile Neoproterozoic calc-alkaline gneisses (Cambaí Complex). The connection with associated (ultra-)mafic metavolcanic and metasedimentary rocks (Palma Group) is not well established. The whole complex was deformed during the Brasiliano orogenic cycle. Both metasedimentary and metavolcanic rocks as well as metaplutonic rocks of the Cambaí Complex have been sampled for geochemical analyses in order to get constraints on the tectonic setting of these rocks and to establish a tectonic model for the São Gabriel block and its role during the assembly of West-Gondwana. The major element compositions of the igneous rocks (Palma Group and Cambaí Complex) indicate a subalkaline character; most orthogneisses have a calc-alkaline chemistry; many metavolcanic rocks of the Palma Group show signatures of low-K tholeiitic volcanic arc basalts. Trace element data, especially Ti, Zr, Y, Nb, of most igneous samples from both the lower Palma Group and the Cambaí Complex indicate origin at plate margins, i.e., in a subduction zone environment. This is corroborated by relative enrichment in LREE, low contents of Nb and other high field strength elements and enrichment in LILE like Rb, Ba, and Th. The data indicate the possible existence of two suites, an oceanic island arc and a continental arc or active continental margin. However, some ultramafic samples of the lower Palma Group in the western São Gabriel block indicate the existence of another volcanic suite with intra-plate character which possibly represents relics of oceanic island basalts (OIB). Trace element data indicate contributions from andesitic to mixed felsic and basic arc sources for the metasedimentary rocks. The patterns of chondrite- and N-MORB-normalized spider diagrams resemble the patterns of the igneous rocks, i.e., LILE and LREE enrichment and HFS depletion. The geochemical signatures of most igneous and metasedimentary samples and their low (87Sr/86Sr)t ratios suggest only minor contribution of old continental crust.A geotectonic model for the São Gabriel block comprises east-ward subduction and following accretion of an intra-oceanic island arc to the eastern border of the Rio de la Plata Craton at ca. 880 Ma, and westward subduction beneath the newly formed active continental margin between ca. 750 and 700 Ma. The São Gabriel block represents relics of an early Brasiliano oceanic basin between the Rio de la Plata and Kalahari Cratons. This ocean to the east of the Rio de la Plata Craton might be traced to the north and could possibly be linked with Neoproterozoic juvenile oceanic crust in the western Brasília belt (Goiás magmatic arc).  相似文献   

19.
Major element compositions and rare-earth element (REE) and transition element(Ni,Cr and V) abundances have been determined on 44 basalt samples from eastern China.These basalts have SiO2 contents ranging from 38.63 to 55.24(wt.%),and Na2O K2O from 3.1 to 9.4(wt.%).Ni and Cr abundances are largely variable,respectively falling in ranges 60-605 and 78-1150 ppm.REE abundances,especially light rare-earth elements(LREE), are highly variable.La/Sm and La/Yb ratios vary 2.8 to 7.6 and 1.8 to 8.1. Although the segregation mainly of olivine and clinopyroxene is requested to account for the vari-able and low MgO,CaO/Al2O3,Cr and Ni characteristic of these basalts studied here,the differ-ences in REE composition of the basalts are still related mainly to the partial melting process.Obvious varations in REE abundances could be principally attributed to the partial melting process.Obvious variations in REE abundances could be principally attributed to the partial melting processes that took place at different depths,in spite of some variations caused by the fractional crystallization processes.REE abundances and La/Sm and La/Yb ratios systematically decrease with increasing SiO2,which probably indicated that the basaltic magma derived from a deeper level has higher LREE and LREE/HREE ratios than that from a shallower level.As viewed from the fact that the D^Yb/D^La ratios of clinopyroxenes in the basaltic system increase with increasing pressure,the increase of LREE/HUEE ratios with increasing melting depth can be interpreted as the pressure dependence of bulk D^HREE/D^LREE ratios of silicate minerals,in addition to the pressure control over the melting degree.  相似文献   

20.
The mafic-ultramafic metavolcanics of the Volotsk sequence are the earliest formations of the Karelian gneiss-greenstone region. They are fragments of Early Archean komatiite-basalt crust, constituting the base of the section of the Vodla block, on the periphery of which greenstone belts formed in the Late Archean. The komatiites of the Volotsk sequence are of the Al-nondepleted geochemical type [(Al2O3/TiO2)N, (Gd/Yb)N = 1.0], which may be related to relatively low temperatures existing in the Early Archean mantle of the Karelian gneiss-greenstone region. The parent magmas of the komatiites were generated in a depth range of 450-250 km under conditions of high (>50%) degrees of partial melting in equilibrium with an olivine-orthopyroxene restite. Differentiation of the komatiite melts after eruption on the surface was controlled by fractionation of olivine (Fo93) and a small amount of liquidus chromite. Sm-Nd isotopic dating of the komatiites and metabasalts to 3391±76 Ma reflects the time the Volotsk sequence accumulated. The positive value of εNd(T) = +1.2±0.21 suggests the existence in the Early Archean mantle of a region of reservoirs depleted in highly incongruent elements [(La/Zr)N = 0.78] produced during early stages of melting and extraction of basaltic magmas during a 100-200-m.y. interval before formation of the Volotsk sequence. The 2764±150 Ma Pb-Pb isotopic age of the metavolcanics corresponds to the time of metamorphism and granite formation, extensively manifested in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号