首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》1997,12(5):577-592
A densely sampled profile (58 cm in thickness) composed of 13 samples of the Kupferschiefer and overlying Zechstein carbonates from the Sangerhausen Basin, Germany has been analysed by various geochemical and microscopic methods in order to clarify the mechanism of base metal accumulation. In this location, the Kupferschiefer is only slightly influenced by the hematite-bearing, oxidized fluids calledRote Fäule.The determination of facies-dependent parameters along the profile indicates that Kupferschiefer from the Sangerhausen Basin was largely deposited in a marine environment; only at the beginning of Kupferschiefer sedimentation did euxinic conditions prevail. The bottom part of the profile is significantly enriched in trace elements such as Cu, Ph, Zn, As, Co, Ag and U. The Cu concentration amounts to 19.88 wt.%. Post-depositional oxidation of the organic matter is observed only in the transition zone between the Kupferschiefer and the Zechstein conglomerate indicating the influence of ascending, oxidizing brines. Microscopic analyses show that only Fe sulfides form framboidal textures; Cu minerals are present along the total profile preferentially in fractures and as patchy structures composed of chalcocite, chalcopyrite and bornite. In the highly mineralized bottom section, Cu sulfides are associated with pyrobitumen, sparry calcite and arsenopyrite. Results from maturation studies of organic matter suggest that the maximum temperature affecting the Kupferschiefer was approximately 130°C.A 3-step-process of metal accumulation is proposed. During deposition of the sediment, framboidal pyrite and pyrite precursors were precipitated by bacterial SO42− reduction (BSR). During diagenesis the pyrite and pyrite precursors were largely replaced by mixed Cu/Fe minerals and by chalcocite (PR). In the section with very high Cu contents (> 8%) reduced sulfur from Fe-sulfides was not sufficient for precipitation of Cu and other trace metals from ascending solutions. In this part of the profile, thermochemical SO42− reduction (TSR) occurred after pyrite replacement as indicated by the presence of pyrobitumen and sparry calcite.  相似文献   

2.
A new type of gold mineralisation containing minor amounts of platinum and palladium has been found proximal to the secondary redox interface located below the Cu-Ag Kupferschiefer orebody of the Polkowice-Sieroszowice mine in the south-western part of the Lubin-Sieroszowice district, Poland. This deposit can be classified as redbed-type gold. Our study shows that gold, platinum and palladium occur in secondary red-coloured sections of the basal Zechstein sedimentary rocks and in the uppermost Weissliegendes sandstone. Noble metal mineralisation occurs within an average interval of 0.22 m, which lies directly below the copper ores. The average grade of the horizon is 2.25 ppm Au, 0.138 ppm Pt and 0.082 ppm Pd with a metal content of several tens of tonnes of gold. A transition zone has been recognised between the gold-bearing horizon and the copper deposit. This transition zone is characterised by the presence of low grades of copper (<0.2 wt%) and elevated gold contents (>0.5 ppm). Native gold accompanied by electrum, mercury-bearing gold, haematite, covellite, chalcocite, bornite and chalcopyrite has been identified in the gold-bearing horizon. In some sections, Pd-arsenides, tetra-auricupride, Co-arsenides, clausthalite, tennantite, digenite, yarrowite, spionkopite and galena have also been noted.  相似文献   

3.
Water samples (springs, creeks, mine adits) from different former mining districts of the Harz Mountains and the nearby Kupferschiefer (copper shale) basin of Sangerhausen were analysed for major ions and trace metals. Due to more intensive water rock interactions including the ore minerals, the mine water concentrations of main components and trace metals are generally higher compared to non mining affected surface waters of the mountain range. Furthermore, the content of major ions in mine water is enriched by mixing processes with saline waters from Permian layers in the Kupferschiefer district and at the deeper levels of the mines in the Upper Harz Mountains. The waters of the different mining districts can be distinguished by trace metal occurrences and concentrations derived from the different ore bodies. Water from the Kupferschiefer mines shows the highest Na, Cl, Cu, Mo and U concentrations, whereas a combination of elevated As and Se concentrations is typical for most of the samples from the mines around St. Andreasberg. However, there are exceptions, and some water samples of all the investigated mining districts do not follow these general trends. Despite the influence of mining activities and ore mineralisation, hydrochemical effects due to rain water dilution can be seen in most of the waters. According to the elevation of the mountain range, higher precipitation rates decrease the ion concentrations in the waters of springs, creeks and mine adits.  相似文献   

4.
Previous studies have shown that the ascending, oxidizing brines play a very important role in Kupferschiefer mineralization. Fractures could be the pathway of the brines. In order to clarify the influences of the brines on bulk organic matter, aromatic hydrocarbons and Kupferschiefer mineralization, one veinlet Kupferschiefer profile from the Lubin mine, southwestern Poland was studied with the microscopic, geochemical and Rock-Eval methods. The microscopic results indicate that organic matter of the veinlet sample consists dominantly of bitumen. Its extract content is higher than in other samples. The dominant aromatic compounds are naphthalene and alkylated naphthalenes (Na-PAH), which have migrated into the veinlet sample from other sediments. The content of phenanthrene and its methylated derivatives (Ph-PAH) is much lower than in other samples. The reason may be due to their heavier mass than Na-PAH. It is more difficult for Ph-PAH to migrate. The Na-PAH was probably removed from the shale by dist  相似文献   

5.
Melt and fluid inclusions were investigated in six quartz phenocryst samples from the igneous rocks of the extrusive (ignimbrites and rhyolites) and subvolcanic (granite porphyries) facies of the Lashkerek Depression in the Kurama mining district, Middle Tien Shan. The method of inclusion homogenization was used, and glasses from more than 40 inclusions were analyzed on electron and ion microprobes. The chemical characteristics of these inclusions are typical of silicic magmatic melts. The average composition is the following (wt %): 72.4 SiO2, 0.06 TiO2, 13.3 Al2O3, 0.95 FeO, 0.03 MnO, 0.01 MgO, 0.46 CaO, 3.33 Na2O, 5.16K2O, 0.32 F, and 0.21 Cl. Potassium strongly prevails over sodium in all of the inclusions (K2O/Na2O averages 1.60). The average total of components in melt inclusions from five samples is 95.3 wt %, which indicates a possible average water content in the melt of no less than 3–4 wt %. Water contents of 2.0 wt % and 6.6 wt % were determined in melt inclusions from two samples using an ion microprobe. The analyses of ore elements in the melt inclusions revealed high contents of Sn (up to 970 ppm), Th (19–62 ppm, 47 ppm on average), and U (9–26 ppm, 18 ppm on average), but very low Eu contents (0.01 ppm). Melt inclusions of two different compositions were detected in quartz from a granite porphyry sample: silicate and chloride, the latter being more abundant. In addition to Na and K chlorides, the salt inclusions usually contain one or several anisotropic crystals and an opaque phase. The homogenization temperatures of the salt inclusions are rather high, from 680 to 820°C. In addition to silicate inclusions with homogenization temperatures of 820–850°C, a primary fluid inclusion of aqueous solution with a concentration of 3.7 wt % NaCl eq. and a very high density of 0.93 g/cm3 was found in quartz from the ignimbrite. High fluid pressure values of 6.5–8.3 kbar were calculated for the temperature of quartz formation. These estimates are comparable with values obtained by us previously for other regions of the world: 2.6–4.3 kbar for Italy, 3.7 kbar for Mongolia, 3.3–8.7 kbar for central Slovakia, and 3.3–9.6 kbar for eastern Slovakia. Unusual melt inclusions were investigated in quartz from another ignimbrite sample. In addition to a gas phase and transparent glass, they contain spherical Feoxide globules (81.2 wt % FeO) with high content of SiO2 (9.9 wt %). The globules were dissolved in the silicate melt within a narrow temperature range of 1050–1100°C, and the complete homogenization of the inclusions was observed at temperatures of 1140°C or higher. The combined analysis of the results of the investigation of these inclusions allowed us to conclude that immiscible liquids were formed in the high-temperature silicic magma with the separation of iron oxide-dominated droplets.  相似文献   

6.
In the northern district of Hesse sandstones which have very high lithium contents (400–1000 ppm) occur in the basement of the Kupferschiefer. The lithium values are related to cookeite but not to quartz as it was stated in the literature. The cookeite contains up to 1,6% Li, while quartz has only 80 ppm Li and less. Geochemical criteria lead to the conclusion that the lithium enrichment must have taken place primaryly during the sedimentation. Most likely lithium biotites were deposited along with quartz and feldspar. The cookeite was formed later by diagnetic alteration of these biotites.

Hern Prof. Dr. H. Harder danken wir für die Förderung dieser Arbeit.  相似文献   

7.
Basaltoids of the Vendian–Cambrian Kulbyurstyug volcanic complex in the eastern part of Kuznetsk Alatau have a high content of titanium (TiO2 3–4 wt %). They are relatively enriched with LILE and HFSE (Ba 360–900, Zr 160–726, Nb 66–101, ΣREE up to 225–329 ppm), and demonstrate a fractionated spectrum of REEs (La/Yb ~ 13–17), high Nb/U (44–66), and low Th/Ta and Th/Nb. These features are comparable with derivatives of OIB (Ocean Island Basalts) magmatism. The rock geochemistry suggests the possible formation of an initial mafic melt in the garnet-bearing peridotite mantle with 2–4% degree of melting and the presence of a small amount of spinel. By the age and composition, the studied volcanics are correlated with the OIB magmatism products, occurring in the adjacent Gorny Altai and also considered to be derivatives of intraplate magmatism of Riphean–Early Cambrian age. This magmatism was caused by plume activity during formation of the Paleo-Asian Ocean.  相似文献   

8.
Rujevac is a low-temperature hydrothermal polymetallic Sb-Pb-Zn-As vein-type ore deposit, hosted within a volcanogenic-sedimentary zone situated in the Rujevac-Crvene Stene-Brezovica Diabase-Chert Formation (DCF) of the Podrinje Metallogenic District (PMD), Serbia. It is located several kilometers SE from the Boranja contact aureole, which is an integral part of the PMD in Western Serbia. Genetically related to the Tertiary granodioritic magma, the mineral assemblages are characterized by specific features. The mineral association of this deposit consists of sulfides, Pb-Sb(As) sulfosalts, native metals, oxides, hydroxides and gangue minerals. Chemical composition of the ore is very complex, where contents of valuable metals range as follows: Sb (0.17–24.31 wt.%), Zn (0.21–6.29 wt.%), Pb (0.15–6.33 wt.%), As (0.06–1.28 wt.%), Cd (25–747 ppm), Ag (7–408 ppm), Hg (13–473 ppm), and Tl (<1–29 ppm). Electron Probe Microanalyses (EPMA) of native arsenic from both the Rujevac and Stragari deposits showed contents of As up to 98.8 and 97.1 wt.%, with impurity contents of Sb up to 1.3 and 6.6 wt.%, and Tl up to 2 and 1.3 wt.%, respectively. Rhombohedral unit-cell parameters for native arsenic from Rujevac and Stragari deposits amount to: a?=?3.760(2), c?=?10.555(3) Å, V?=?129.23(7) Å3 and a?=?3.763(1), c?=?10.560(5) Å, V?=?129.48(8) Å3, respectively. Mineral assemblages, deposition order and genesis of the Rujevac polymetallic deposit were also discussed in detail. Native arsenic mineralization here has been additionally compared with similar well-known global deposits.  相似文献   

9.
These Kupferschiefer deposits were probably formed as a result of a mixing of two brines. The upper cold brine (UCB) is an unmineralized brine rich in Na, Ca, Cl and SO4, with a pH>7 and originating from evaporites overlying the metal-bearing Zechstein rocks. The lower hot brine (LHB) rich in Mg, K, Cl, SO4 and CO3 with a pH<=7 formed in sediments in the central part of the Zechstein basin at a depth of 7,000 m. This brine was subjected to heating and upward convection toward the Fore-Sudetic monocline along the bottom of the Z1 carbonates. During its migration, it caused albitization, serpentinization and leaching of the primary metal deposits in rocks underlying the Zechstein becoming enriched in heavy metals. The mineralization process, being a result of the mixing of the two brines (UCB and LHB), and catalytic oxidation of the organic matter of the black shale were initiated at shallow depths in the area of the Fore-Sudetic monocline. The boundary of the two brines generally overlapped the strike of the black shale.Parts of the deposit with shale-free host rock suggest that the action of two brines alone was capable of producing economic concentrations of Cu, Pb and Zn. Where the boundary of the two brines overlaps the autooxidation zone (the black shale bottom) and also coincides with radiation of thucholite, concentrations of noble metals result.The characteristic vertical distribution of the triplet CuPbZn from the bottom upward is universal in the Kupferschiefer environment.  相似文献   

10.
《International Geology Review》2012,54(16):1967-1982
ABSTRACT

The Taupo Volcanic Zone (TVZ), New Zealand, is a well-documented volcanic arc characterized by explosive rhyolitic magmas within a series of caldera complexes that include the Okataina Volcanic Centre (OVC). New quartz melt inclusion and volcanic glass data from the 45 ka caldera-forming Rotoiti eruption within the OVC are compared to published studies. The new data are characterized by low K2O (~1.5–3.5 wt.%), Rb (~30–70 ppm), Sr (~40–90 ppm), U (~0.5–2.5 ppm), and Ba (~300–1000 ppm) ranges that differ significantly from other OVC systems (~3.0–4.5 wt.% K2O, ~80–150 ppm Rb, and ~2.5–5.0 ppm U). Most interestingly, the Rotoiti melt inclusion data measured in this study show a decrease in Rb, Sr, and U, although the fractionation trends originate from the same source point as published OVC data. This progressive decreasing trend is interpreted as an interaction with a less enriched rhyolitic melt (represented by the low Rb, Sr, and U of glasses) during fractionation processes from a common TVZ source. The established model for TVZ rhyolites is that they are extracted from a middle or upper crustal source (‘mush’ zone) prior to eruption. Adding to this model, new melt inclusion data suggest that all TVZ rhyolites are fractionated from this common TVZ source and, prior to eruption, the Rotoiti system was rejuvenated by this source (evidenced by the low REE glasses). Exactly what triggers the common TVZ source to fractionate remains unclear, but a proposed mechanism to account for this involves the successive melting of the upper crust by upwelling mantle induced by incremental subduction.  相似文献   

11.
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian–Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation.Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P2O5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La–Gd) show indeed a marked enrichment relative to the HREE (Tb–Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.  相似文献   

12.
Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic–plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer–disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide–gold–quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite–(chlorite)–albite metasomatic rock of the main productive stage, which mainly develops in a volcanic–sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au–Ag–Te–W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =–6 to–7‰, and δ18O = +5‰ as the temperature decreases from 420–300°C (gold–sulfide ore) to 250–130°C (gold–(sulfide)–quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz–carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative–0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold–sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au–Te mineral assemblage. Taking into account structural–morphological and mineralogical–geochemical features, the ore–magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore–alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.  相似文献   

13.
The Central Tianshan terrane (CTT) is part of the southwestern margin of the Central Asian Orogenic Belt (CAOB). Since the collision between CTT and Tarim block marks the termination of the South Tianshan Ocean in the southwestern corner of the CAOB, the CTT is regarded as a key area for understanding the tectonic evolution of the CAOB. The Airikenqiken granitic pluton is located ~30 km to the northwest of Baluntai town in the eastern part of CTT. Here we report a zircon LA-ICP-MS U–Pb age of 320.1 ± 3.3 Ma for the granite. Geochemically, the pluton is characterized by a high concentration of SiO2 (71.01–73.58 wt.%) and relatively low contents of MgO (0.28–0.5 wt.%), Cr (1–10 ppm), and Ni (~2 ppm). The rocks show enrichment of large ion lithophile elements (LILEs) and significantly negative Nb, Ta, Ti, and P anomalies. Light rare earth element (LREE) enrichment and slightly negative Eu anomalies are also displayed. Zircon εHf(t) values at ~320 Ma range from – 1.1 to +12.2. Our data suggest that the parental magma of the pluton was generated by partial melting of a thickened garnet-bearing, amphibolite facies lower crust. The magma was contaminated by ancient crustal components en route to the shallow crust. Together with the information from previous studies on the Central and South Tianshan Mountains, we propose that the Airikenqiken granite formed in a post-collisional setting and that the late Palaeozoic continental growth of CTT involved the input of juvenile components.  相似文献   

14.
Alkali carbonates nyerereite, ideally Na2Ca(CO3)2 and gregoryite, ideally Na2CO3, are the major minerals in natrocarbonatite lavas from Oldoinyo Lengai volcano, northern Tanzania. They occur as pheno- and microphenocrysts in groundmass consisting of fluorite and sylvite; nyerereite typically forms prismatic crystals and gregoryite occurs as round, oval crystals. Both minerals are characterized by relatively high contents of various minor elements. Raman spectroscopy data indicate the presence of sulfur and phosphorous as (SO4)2− and (PO4)3− groups. Microprobe analyses show variable composition of both nyerereite and gregoryite. Nyerereite contains 6.1–8.7 wt % K2O, with subordinate amounts of SrO (1.7–3.3 wt %), BaO (0.3–1.6 wt %), SO3 (0.8–1.5 wt %), P2O5 (0.2–0.8 wt %) and Cl (0.1–0.35 wt %). Gregoryite contains 5.0–11.9 wt % CaO, 3.4–5.8 wt % SO3, 1.3–4.6 wt % P2O5, 0.6–1.0 wt % SrO, 0.1–0.6 wt % BaO and 0.3–0.7 wt % Cl. The content of F is below detection limits in nyerereite and gregoryite. Laser ablation ICP-MS analyses show that REE, Mn, Mg, Rb and Li are typical trace elements in these minerals. Nyerereite is enriched in REE (up to 1080 ppm) and Rb (up to 140 ppm), while gregoryite contains more Mg (up to 367 ppm) and Li (up to 241 ppm) as compared with nyerereite.  相似文献   

15.
Dikes, stocks and/or sheet flows of felsic volcanic and subvolcanic rocks are typically observed in the vicinity of rare-metal Li-F granite massifs. Their ubiquitous spatial association to rare-metal granites and, often, geochemical affinity to them suggest their certain petrological relation. Compositionally unique ultrapotassic trachydacites enriched in many rare elements were found among these rocks within the Khangilay complex of ore deposits in Eastern Transbaikalia. Melt inclusions in rock-forming quartz were studied to reconstruct the composition and evolution of parent melt. The obtained data demonstrated the existence of a super-potassic peraluminous melt (K2O = 6.12 wt %, Na2O = 1.08 wt %) having elevated contents of rare lithophile elements (730 ppm Rb2O and 900 ppm BaO). The ion-microprobe content of Li is 354.23 ppm at a relatively low F content (up to 0.5 wt %). The residual melt is characterized by the most unusual composition: extremely low contents of mafic components and basicity (< 0.5 wt % femic oxides), a high Al index (A/CNK = 1.53) at comparatively low SiO2 (60 wt %), and high total sodic alkalinity (more than 10 wt % K2O + Na2O; 6.11 wt % Na2O). Such a composition corresponds to ongonite magma. However, the melt contains no F but has a high Cl content (0.34 wt %), which corresponds to the limit Cl saturation of haplogranite melt. SHRIMP-II U-Pb zircon dating showed significant difference between rare metal granites and trachyrhyodacites of the Khangilay complex of ore deposits: 139.9 ± 1.9 Ma and 253.4 ± 2.4 Ma, respectively. The geochemical similarity of these rocks, primarily in terms of abundance of refractory elements, REE distribution patterns, and initial Sr ratio, indicates their derivation from similar protolith.  相似文献   

16.
The Neoarchaean Jonnagiri greenstone terrane (JGT) is located at the centre of the arcuate Hutti–Jonnagiri–Kadiri–Kolar composite greenstone belt in the eastern Dharwar Craton. High MgO (MgO = ~14 wt.%; Nb = 0.2 ppm), low Nb (LNB) (MgO = 7.8–12 wt.%; Nb = 0.1–5.1 ppm) and high Nb basalts (HNB) (MgO = 5.6–10.1 wt.%; Nb = 9.0–10.6 ppm) metamorphosed to lower amphibolite facies are identified based on their geochemical compositions. These metabasalts exhibit depleted HFSE (Nb–Ta, Zr–Hf), pronounced LREE and LILE enrichments suggesting contribution from subduction‐related components during their genesis. Th and U enrichment over Nb–Ta indicates influx of fluids dehydrated from subducted oceanic lithosphere. The high MgO basalts with higher Mg# (51) than that of the associated LNB and HNB (Mg# = 34–47) represent early fractionated melts of subduction‐modified mantle peridotite. The LNB were produced by partial melting of mantle wedge metasomatized by slab‐dehydrated fluids, whereas the HNB represents melts of subducted oceanic crust and hybridized mantle wedge. Lower Dy/Yb and variable La/Yb ratios suggest their generation at shallower depth within spinel peridotite stability field. The low Ce–Yb trend of these metabasalts reflects intraoceanic type subduction which straddles the fields of arc and back‐arc basin basalts, resembling the Mariana‐type arc basalts. The Jonnagiri metabasalts were derived in a paired arc‐back‐arc setting marked by nascent back‐arc rift system that developed in the proximity of an intraoceanic arc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Rhythmic copper sulphide bands occur in the Weissliegendes sandstones, in the footwall of the Kupferschiefer in the mining district of SW Poland. The δ 34S values of sulphides vary from −39 to — 44‰ (6–7‰ lighter than Kupferschiefer sulphides). The copper sulphides are represented mainly by digenite and chalcocite. According to microprobe results their Pb, Ni, Zn and Ag contents are similar to those in the Kupferschiefer. The bands are assumed to be formed by diffusion of bacterially produced hydrogen sulphide from the Kupferschiefer into the porous volume of the white sandstones containing dissolved copper. The sulphides were precipitated in almost equidistant bands, from top to bottom, probably according to the Ostwald-Prager supersaturation theory. The increase of isotopically heavier sulphur towards the lower levels in the sandstone might be explained by closing of the bacterial sulphate reduction system. Contribution to the IGCP Project No. 254  相似文献   

18.
There are at least two sapropelic units associated with Late Palaeozoic black shales in Central Europe. The older unit, of Late Carboniferous age, is the lower part of the Anthracosia Shales in the Intrasudetic Basin, and the younger one is the well-known Zechstein Kupferschiefer in both the Foresudetic Monocline and the Northsudetic Basin. The first unit is of lacustrine origin, while the second one represents deposition in a shallow marine depositional environment. Both units contain high amounts of organic matter, thus being typical black shales.The organic matter dispersed in these shales was studied petrographically. In general, the vitrinite reflectance of the shales studied indicates variable, but moderate organic matter maturity (0.68–1.25%), equivalent to the oil window. Detailed microscopic studies of the organic material dispersed in the lower unit of the Anthracosia Shales showed that liptinite, especially alginite is the most abundant component. Secondary altered organic matter, i.e. solid hydrocarbons, rarely occurs. Organic components together with mineral matter constitute a lacustrine sapropelic association, a humic (terrestrial) association and an intermediary association. The character and predominance of alginite and lacustrine sapropelic association are indicative of an open-lacustrine depositional environment. In general, this organic composition is typical of type I kerogen.Microscopic analysis of the Kupferschiefer revealed a mixture of liptinite, vitrinite and inertinite macerals, and other organic components such as amorphous sapropelic mass (ASM) and solid bitumens. The most common organic components are liptinite macerals. Bituminite and alginite predominate, and are diagnostic macerals of this unit. The amount of bituminite locally exceeds 85 vol.%. Other liptinite macerals such as sporinite and liptodetrinite, are present in significantly lower amounts, one exception being ASM, which may be present in higher amounts. Humic constituents (vitrinite and inertinite) are rare, present in small amounts in the Kupferschiefer beds. The organic matter composition points to type II kerogen for this unit.  相似文献   

19.
The results of studying Hg in an underwater hydrothermal system in the ocean using the Middle Valley of the Juan de Fuca ridge as an example are presented. A significant part of Hg is accumulated in the basalt fundament (Holes 858F, G), forming anomalously high concentrations (up to 29.30 ppm) in certain parts. The high Hg contents were established in metalliferous sediments (323 ppm) of the sedimentary cover (Hole 858D) and in sulfide deposits (up to 10.30 ppm). In other parts of the section, Hg content is 0.02–0.76 ppm (Holes 858B, D, F), background Hg contents in sediments—0.08–0.28 ppm and in basalts—0.17–0.31 ppm (Holes 855A, C, D).  相似文献   

20.
The overwhelming majority of porphyry Mo-Au-Cu deposits in the Urals are related to the low-K quartz diorite minor intrusions of the island-arc type, which were formed from Silurian Middle-Late Carboniferous. In the South Urals, the Cu/Mo ratio of ore decreases eastward along with enrichment in Re. At the same time, molybdenite is depleted in this metal in compliance with more sialic crust and potassium content in ore-bearing dioritic rocks. Quartz diorites at the highest-Re deposits contain 1–2 wt % K2O. At most Early-Middle Devonian deposits and occurrences of the western Tagil-Magnitogorsk-West Mugodzhary femic megazone, molybdenite is sporadic. The Re content in rocks was mainly determined using the kinetic method and to a lesser extent with ICP-MS. A Cameca SX-100 microprobe was also used for study of molybdenite. The Cu/Mo ratio of ore exceeds 600; the Mo content is commonly 1–15 ppm (occasionally up to 30 ppm and higher); the Re content is up to 0.01–0.04 ppm, sporadically increasing to 0.08–0.17 ppm. At the same time, the Re content in molybdenite often reaches 0.2–0.4 wt %. The highest Re concentration was established in the ore of the largest Mikheevsky deposit formed in the Late Devonian-Early Carboniferous and localized in the easternmost part of the East Ural sialic-femic megazone. The Re content in the orebodies of this deposit often reaches 0.2–0.5 ppm (up to 1.4–2.7 ppm) and 0.21 wt % in molybdenite. The average Mo grade of ore is 80 ppm and Cu/Mo ratio is 66. These data and Sr isotopic composition of ore-bearing granitoid and metasomatic rocks [(87Sr/86Sr)t = 0.7038–0.7051; (?Nd)t = 3–7] testify to the mantle source of matter with insignificant admixture of crustal material. The same is apparently valid for Re and Cu in contrast to Mo. This statement is corroborated by the inverse correlation between Cu/Mo and Mo/Re ratios in the ore. Fluid-crystal fractionation of ore-bearing dioritic rocks is accompanied by enrichment of ore in Mo and by decrease in Re content in molybdenite. In the Tarutino ore field, the pyrite-chalcopyrite mineralization gives way to the molybdenite mineralization in line with in-sequence intrusion of diorite with quartz-bearing groundmass and granodiorite porphyry. Because of increasing silica content in granitoids, the Re concentration in molybdenite commonly remains below 0.07 wt % as is noted at the rare deposits localized in the sialic megazones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号