首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

2.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

3.
A vast tract of ENE–WSW to NE–SW trending mafic dyke swarm transects Archaean basement rocks within the eastern Dharwar craton. Petrographic data reveal their dolerite/olivine dolerite or gabbro/olivine gabbro composition. Geochemical characteristics, particularly HFSEs, indicate that not all these dykes are co-genetic but are probably derived from more than one magma batch and different crystallization trends. In most samples the LaN/LuN ratio is at ∼2, whereas others have a LaN/LuN ratio >2 and show higher concentrations of high-field strength elements (HFSEs) than the former group. As a consequence, we assume that the ENE–WSW to NE–SE trending mafic dykes of the eastern Dharwar craton do not represent one single magmatic event but were emplaced in two different episodes; one of them dated at about 2.37 Ga and another probably at about 1.89 Ga. Trace element modelling also supports this inference: older mafic dykes are derived from a melt generated through ∼25% melting of a depleted mantle, whereas the younger set of dykes shows its derivation through a lower degree of melting (∼15%) of a comparatively enriched mantle source.  相似文献   

4.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

5.
Palaeomagnetic and geochronological studies on mafic rocks in the Lake Ladoga region in South Russian Karelia provide a new, reliably dated Mesoproterozoic key paleopole for the East European Craton (Baltica). U–Pb dating on baddeleyite gives a crystallisation age of 1452 ± 12 Ma for one of the studied dolerite dykes. A mean palaeomagnetic pole for the Mesoproterozoic dolerite dykes, Valaam sill and Salmi basalts yields a paleopole at 15.2°N, 177.1°E, A95 = 5.5°. Positive baked contact test for the dolerite dykes and positive reversal test for the Salmi basalts and for the dykes confirm the primary nature of the magnetisation. Comparison of this Baltica palaeopole with coeval paleomagnetic data for Laurentia and Siberia provides a revised palaeoposition of these cratons. The results verify that the East European Craton, Laurentia and Siberia were part of the supercontinent Columbia from the Late Palaeoproterozoic to the Middle Neoproterozoic.  相似文献   

6.
Whereas most radiometric chronometers give formation ages of individual meteorites >4.5 Ga ago, the K–Ar chronometer rarely gives times of meteorite formation. Instead, K–Ar ages obtained by the 39Ar–40Ar technique span the entire age of the solar system and typically measure the diverse thermal histories of meteorites or their parent objects, as produced by internal parent body metamorphism or impact heating. This paper briefly explains the Ar–Ar dating technique. It then reviews Ar–Ar ages of several different types of meteorites, representing at least 16 different parent bodies, and discusses the likely thermal histories these ages represent. Ar–Ar ages of ordinary (H, L, and LL) chondrites, R chondrites, and enstatite meteorites yield cooling times following internal parent body metamorphism extending over ∼200 Ma after parent body formation, consistent with parent bodies of ∼100 km diameter. For a suite of H-chondrites, Ar–Ar and U–Pb ages anti-correlate with the degree of metamorphism, consistent with increasing metamorphic temperatures and longer cooling times at greater depths within the parent body. In contrast, acapulcoites–lodranites, although metamorphosed to higher temperatures than chondrites, give Ar–Ar ages which cluster tightly at ∼4.51 Ga. Ar–Ar ages of silicate from IAB iron meteorites give a continual distribution across ∼4.53–4.32 Ga, whereas silicate from IIE iron meteorites give Ar–Ar ages of either ∼4.5 Ga or ∼3.7 Ga. Both of these parent bodies suffered early, intense collisional heating and mixing. Comparison of Ar–Ar and I–Xe ages for silicate from three other iron meteorites also suggests very early collisional heating and mixing. Most mesosiderites show Ar–Ar ages of ∼3.9 Ga, and their significantly sloped age spectra and Ar diffusion properties, as well as Ni diffusion profiles in metal, indicate very deep burial after collisional mixing and cooling at a very slow rate of ∼0.2 °C/Ma. Ar–Ar ages of a large number of brecciated eucrites range over ∼3.4–4.1 Ga, similar to ages of many lunar highland rocks. These ages on both bodies were reset by large impact heating events, possibly initiated by movements of the giant planets. Many impact-heated chondrites show impact-reset Ar–Ar ages of either >3.5 Ga or <1.0 Ga, and generally only chondrites show these younger ages. The younger ages may represent orbital evolution times in the asteroid belt prior to ejection into Earth-crossing orbits. Among martian meteorites, Ar–Ar ages of nakhlites are similar to ages obtained from other radiometric chronometers, but apparent Ar–Ar ages of younger shergottites are almost always older than igneous crystallization ages, because of the presence of excess (parentless) 40Ar. This excess 40Ar derives from shock-implanted martian atmosphere or from radiogenic 40Ar inherited from the melt. Differences between meteorite ages obtained from other chronometers (e.g., I–Xe and U–Pb) and the oldest measured Ar–Ar ages are consistent with previous suggestions that the 40K decay parameters in common use are incorrect and that the K–Ar age of a 4500 Ma meteorite should be possibly increased, but by no more than ∼20 Ma.  相似文献   

7.
The Phanerozoic history of mafic magmatism in the southern Siberian craton included three major events. The earliest event (~500 Ma) recorded in dolerite dikes occurred during accretion and collision at the early stage of the Central Asian orogen. Injection of mafic melts into the upper crust was possible in zones of diffuse extension within the southern Siberian craton which acted as an indenter. The Late Paleozoic event (~275 Ma) produced dikes that intruded in a setting of subduction-related extension at the back of the active continental margin of Siberia during closure of the Mongolia–Okhotsk ocean, as well as slightly older volcanics (290 Ma) in the Transbaikalian segment of the Central Asian orogen. Early Mesozoic magmatism in the southern Siberian craton resulted in numerous 240–250 Ma mafic intrusions in the Angara–Taseeva basin. The intrusions (Siberian traps) appeared as the subducting slab of the Mongolia–Okhotsk ocean interacted with a lower mantle plume. The post-Late Paleozoic ages of flood basalts (290–275 Ma) correspond to progressive northwestward (in present coordinates) motion of the slab beneath the southern craton margin which likely ceased after the slab had reached the zone of the Siberian superplume. Since its consolidation after the Early Mesozoic activity, the crust in the area has no longer experienced extension favorable for intrusion of basaltic magma.  相似文献   

8.
In the Beishan rift in the eastern Tianshan orogen, Xinjiang Province, a N-S-trending dyke swarm is present in the Pobei area. The swarm cuts through the 270–290 Ma mafic-ultramafic intrusions associated with Ni-Cu sulphide mineralization. These mafic-ultramafic intrusions are typically found along E-W major faults in the Tianshan orogenic belts. We report SHRIMP U-Pb dating of zircons from a dyke of alkaline composition, which yielded a mean age of 252±9 Ma. Alkaline dykes of the same age are found in the Altay region of Siberia. This age is younger than the 270–290 Ma intraplate magmatic events that produced the mafic-ultramafic intrusions in the region, but in general agreement with the 250–260 Ma Permian plume event that gave rise to the Siberian traps and the Emeishan flood basalts in SW China. We suggest that there is a link between the Emeishan event and the dyke swarm in the Beishan rift and that the intraplate magmatism at 270–290 Ma reflects an early stage of mantle plume activity. The N-S trending dyke swarm in the Beishan rift may represent a later stage in the evolution of mantle plume activity in the NW and SW of China. We also speculate that in Beishan rift and possibly elsewhere in the Tianshan region, the dykes fed basaltic volcanism, whose products have since been eroded due to the strong uplift of the Tianshan orogen as a result of the India-Eurasia collision in the Cenozoic.  相似文献   

9.
毛伟  李晓峰  杨富初 《岩石学报》2013,29(12):4104-4120
广东大宝山矿床位于南岭花岗岩带中带。它是我国著名的大型多金属矿床,开采历史久远。近年来的研究表明大宝山矿床与成矿作用有关的斑岩体为燕山早期岩浆活动的产物,因而人们较多地关注中生代的岩浆活动,而忽视了对其他时代岩浆活动的研究。本文在前人研究的基础上,利用锆石LA-ICP-MS U-Pb定年方法系统地测试了大宝山多金属矿床多个花岗质岩体和辉绿岩脉的形成时代,研究表明徐屋片理化流纹斑岩年龄为426.9±2.2Ma、九曲岭黑云母花岗闪长斑岩、船肚花岗闪长岩和大宝山花岗闪长斑岩形成时代分别为162.2±0.7Ma、160.2±0.9Ma和161.0±0.9Ma。矿区内两条辉绿岩脉的年龄分别为210.4±1.4Ma和163.9±1.8Ma。这些结果证实大宝山矿区内存在加里东期、印支期和燕山期等多个旋回的岩浆活动,中晚侏罗世铁镁质的岩浆活动可能存在对成矿的贡献。  相似文献   

10.
Revision of crustal architecture and evolution of the Central Asian Orogenic Supercollage (CAOS) between the breakup of Rodinia and assembly of Pangea shows that its internal pattern cannot be explained via a split of metamorphic terranes from and formation of juvenile magmatic arcs near the East European and Siberian cratons, followed by zone-parallel complex duplication and oroclinal bending of just one or two magmatic arcs/subduction zones against the rotating cratons. Also, it cannot be explained by breakup of multiple cratonic terranes and associated magmatic arcs from Gondwana and their drift across the Paleoasian Ocean towards Siberia. Instead, remnants of early Neoproterozoic oceanic lithosphere at the southern, western and northern periphery of the Siberian craton, as well as Neoproterozoic arc magmatism in terranes, now located in the middle of the CAOS, suggest oceanic spreading and subduction between Eastern Europe and Siberia even before the breakup of Rodinia at 740–720 Ma. Some Precambrian terranes in the western CAOS and Alai-Tarim-North China might have acted as a bridge between Eastern Europe and Siberia.The CAOS evolution can be rather explained by multiple regroupings of old and juvenile crust in eastern Rodinia in response to: 1) 1000–740 Ma propagation of the Taimyr-Paleoasian oceanic spreading centres between Siberian and East European cratons towards Alai-Tarim-North China; 2) 665–540 Ma opening and expansion of the Mongol-Okhotsk Ocean, collision of Siberian and East European cratons with formation of the Timanides and tectonic isolation of the Paleoasian Ocean; 3) 520–450 Ma propagation of the Dzhalair-Naiman and then Transurals-Turkestan oceanic spreading centres, possibly from the Paleotethys Ocean, between Eastern Europe and Alai-Tarim, essentially rearranging all CAOS terranes into a more or less present layout; and 4) middle to late Paleozoic expansion of the Paleotethys Ocean and collision of Alai-Tarim-North China cratons with CAOS terranes and Siberian craton to form the North Asian Paleoplate prior to its collision with Eastern Europe along the Urals to form Laurasia. Two to five subduction zones, some stable long-term and some short-living or radically reorganized in time, can be restored in the CAOS during different phases of its evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号