首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
内蒙古中部发育的三条蛇绿岩带是华北板块和西伯利亚板块之间的缝合带。本文系统研究了其中的温都尔庙和巴彦敖包-交其尔两个蛇绿岩带中变质玄武岩的元素和 Sr、Nd、Pb 同位素地球化学。苏右旗温都尔庙碱性玄武岩为轻稀土富集型;岩石具有板内和大陆裂谷区玄武岩的特征,可能代表了600Ma 左右,温都尔庙地区开始发育的新洋盆。采自苏左旗的巴彦敖包-交其尔玄武岩分为两类,一类呈现轻稀土富集型,呈洋岛玄武岩特征;另一类具有明显的 Nb、Ta 负异常,显示大洋岛弧玄武岩特征,洋岛玄武岩的存在表明古亚洲洋曾经发育洋盆,大洋岛弧玄武岩的存在表明古亚洲洋内部有大洋岩石圈之间的俯冲。将本文的古亚洲洋洋岛玄武岩与中国西南地区的特提斯洋岛玄武岩进行系统的元素和同位素地球化学特征对比表明,古亚洲洋的洋岛玄武岩显示高 U/Pb(HU)和北大西洋和太平洋省的特征,而特提斯洋岛玄武岩属于印度洋省。这些说明古亚洲洋地幔域与特提斯地幔域是两个独立的构造域,它们代表了长期演化的两个不同的地幔地球化学域。  相似文献   

2.
青藏高原东北缘特提斯构造域界线的探讨   总被引:8,自引:3,他引:8  
东特提斯构造域北界的确定不仅可以约束构造域的范围及演化,而且对于约束中国各陆块的原始构造归属也有着非常重要的意义.本文将从地球化学角度对这一科学问题进行探讨.祁连造山带早古生代蛇绿岩单元内枕状玄武岩的元素、Sr-Nd-Pb同位素组成系统研究表明:其地幔源区的Nd和Pb同位素组成均表现出印度洋MORB型同位素组成特征;枕状玄武岩(△^207Pb/^204Pb)t变化范围为9.1~24.3(平均值为14.7),(△^208/^204Pb)t变化范围为9.1~101.1(平均值55.3);与古特提斯和新特提斯蛇绿岩具有一致的同位素组成.因此,祁连造山带古洋幔应属于原特提斯构造域.纵观中国境内的特提斯构造域蛇绿岩的分布特征可知:该构造域表现出自北而南变年轻的时空演化规律,从而说明中央造山带的动力学过程也应纳入冈瓦纳大陆裂解和亚洲增生的总动力学系统之中.  相似文献   

3.
系统研究了西藏雅鲁藏布江蛇绿岩带中部日喀则地区德村、吉丁和昂仁蛇绿岩中基性岩石的元素与 Sr-Nd-Pb 同位素地球化学特征。这些基性岩石,包括玄武岩、辉长岩和辉绿岩,属于低钾拉斑玄武岩系列,球粒陨石标准化稀土元素分配模式为轻稀土元素亏损的 N-MORB 型,(La/Yh)_N=0.31~0.65(除样品 DC993为1.17)。在原始地幔标准化微量元素图上,亏损高度不相容元素,与 N-MORB 配分模式一致。相对于 Th,无 Nb、Ta的亏损,显示样品不是产于 SSZ 环境。经构造环境图解判别,样品落入了 N-MORB 区域内;这些元素成分特征表明样品具有洋中脊环境或成熟的弧后盆地环境属性。Sr、Nd 和 Pb同位素组成特征表明特提斯地幔源区以 DM(亏损地幔)为主,同时存在少量 EMⅡ(富集地幔类型Ⅱ)、Sr,Nd 和 Pb 同位素组成特征还表明特提斯地幔域具有印度洋 MORB 型的 Sr-Nd-Pb 同位素组成特征。本文的结果进一步支持 Zhang et al.(2005)的研究结果,现今印度洋不仅在地理位置上占据了曾经是特提斯洋的大部分,而且它的地幔域还继承了曾经特提斯的地幔域的地球化学特征。  相似文献   

4.
青海省共和盆地周缘晚古生代镁铁质火山岩分属阿尼玛卿蛇绿混杂带,宗务隆构造带和苦海-赛什塘带。阿尼玛卿带正常洋中脊玄武岩(N-MORB)样品具有较高的~(87)Sr/~(86)Sr(t)比值(0.7066~0.7084)、高的ε_(Nd)(t)(12.2~12.8)和较低的~(206)Pb/~(204)Pb初始值(17.72~17.79)。这些同位素特征类似于秦岭勉略蛇绿岩带的N-MORB以及印度洋低~(206)Pb/~(204)Pb高~(143)Nd/~(144)Nd N-MORB。该带中的洋岛玄武岩(OIB)的~(87)Sr/~(86)Sr比值为0.7036~0.7044,ε_(Nd)(t)=4.4~4.8,~(206)Pb/~(204)Pb=17.45~17.62。其Sr和Nd同位素比值可与印度洋代表热点构造的洋岛玄武岩对比,但~(206)Pb/~(204)Pb低于印度洋的热点构造玄武岩,因此,具有类似印度洋低~(143)Nd/~(144)Nd比值MORB同位素特征。宗务隆构造带的N-MORB的Sr同位素比值在0.7041~0.7058,ε_(Nd)(t)=6.1~8.4,~(206)Pb/~(204)Pb=17.51~17.90,划归高~(143)Nd/~(144)Nd比值的N-MORB。苦海大陆裂谷玄武岩显示了高的~(87)Sr/~(86)Sr同位素比值(0.7115和0.7104)和低的ε_(Nd)(t)值(-1.7和-2.5),其~(206)Pb/~(204)Pb(17.64和17.46)与上述大洋玄武质岩石无显著区别。上述各岩类的同位素特征反映了它们生成的构造环境和陆壳组分混染的程度。阿尼玛卿带的N-MORB代表了典型的来自亏损地幔源区的洋中脊产物。与勉略带同类岩石可能来自同一源区。OIB可能属于热点构造成因的洋岛产物并与MORB一起构成了阿尼玛卿洋洋壳。宗务隆带MORB同样代表了主要源自相对亏损地幔的洋脊产物并指示宗务隆带曾开裂成洋。苦海大陆裂谷玄武岩极高的Sr和低的Nd同位素比值是陆壳物质组分的强烈印记,这与该类火山岩发育在前寒武纪基底之上不无关系。结合本区大洋玄武岩普遍低的Nb/U和Ce/Pb比值,推测它们可能源自EMII与DMM物质的交代混合。按照习惯的想法,明显的Dupal异常(△~(208)Pb/~(204)Pb值=46~103和△~(207)Pb/~(204)Pb值=4~18;大多样品~(87)Sr/~(86)Sr>0.704)指示这些岩石在空间上代表了来自南半球印度洋位置的古洋壳残余。但是,北半球愈来愈多的Dupal异常的发现有可能指示它们是类似现今东南亚多洋岛构造历经"汇聚式(focused)俯冲"的产物。此外,宗务隆带MORB的Dupal异常指示本区古特提斯域的北界较先前所定还要北推200km。  相似文献   

5.
休古嘎布蛇绿岩位于雅鲁藏布江蛇绿岩带西段,属于SSZ型蛇绿岩。用Sm-Nd法测定了该蛇绿岩中辉长辉绿岩的结晶年龄,辉石、斜长石和两个全岩样品的等时线年龄为(126.2±9.1)Ma,代表新特提斯洋在该区俯冲消减的时限。同时,对辉长辉绿岩的Nd-Sr-Pb同位素的测定结果表明,辉长辉绿岩的初始εNd(t)值高(6.7~9.1),反映原始岩浆起源于强烈亏损的地幔源区,未受大陆地壳物质的混染;初始206Pb/204Pb比值较低(17.412~17.523),但初始208Pb/204Pb比值较高(37.352~37.706),并具有较高的ISr值(0.70278~0.70383),指示休古嘎布蛇绿岩源于印度洋MORB型地幔域。  相似文献   

6.
日喀则地区的蛇绿岩是西藏南部雅鲁藏布蛇绿岩带出露较好的蛇绿岩之一。对日喀则地区白朗蛇绿岩的主量、微量元素及Sr-Nd同位素研究表明,其基性岩石为钙碱性系列,主要氧化物具有低钛(0.6%~1.1%)和富镁(6.6%~8.7%)、高铝(15.3%~16.0%),以及烧失量普遍较高(2.8%~4.6%)的特征。岩石微量元素配分型式与N-MORB类似,又具有岛弧玄武岩的地球化学特征,表明蛇绿岩受到了俯冲作用的影响。Sr-Nd同位素特征表明源区为略富集的MORB型地幔。白朗蛇绿岩所代表的特提斯地幔域与印度洋地幔域具有相似的地球化学性质,进一步证实了现今的印度洋继承了特提斯地幔域的地球化学特征。  相似文献   

7.
西藏林周盆地设兴组玄武岩地球化学特征及意义   总被引:3,自引:2,他引:1  
青藏高原南部拉萨地块分布的晚白垩世岩浆活动,对了解特提斯洋的构造演化及约束印度-亚洲大陆初始碰撞时限等具有重要的意义。本文在西藏林周盆地林子宗火山岩的下伏晚白垩世设兴组地层中首次发现了玄武岩夹层,并系统开展了玄武岩的Ar-Ar年代学、全岩主量和微量元素地球化学、以及Sr-Nd-Pb同位素地球化学研究。设兴组玄武岩呈夹层状产出于设兴组顶部的红色砂岩中,其斜长石Ar-Ar年龄为90.6±1.8Ma。玄武岩属于高钾钙碱性系列,富集轻稀土元素、强烈富集Ba、Th、U等大离子亲石元素(LILEs),亏损Nb、Ta、Ti等高场强元素(HFSEs),具有明显的大陆边缘弧的火山岩成分特征。玄武岩的Sr-Nd-Pb同位素成分比较均匀,(87Sr/86Sr)t为0.706568~0.706620,εNd(t)为+0.72~+4.75,(206Pb/204Pb)t比值为18.649~18.675,(207Pb/204Pb)t比值为15.640~15.666,(208Pb/204Pb)t比值为39.055~39.108,岩石总体表现出来自于亏损地幔的特征。综合岩石学和地球化学研究结果,设兴组玄武岩可能是晚白垩世(约90.6Ma)俯冲于拉萨地块之下的新特提斯洋壳在重力拖拉下发生板片回转,导致软流圈物质上升提供热量,从而诱发了俯冲流体交代的地幔楔的部分熔融形成的。本文结果进一步证明,之前普遍认为缺少晚白垩世火山岩的拉萨地块南缘,存在新特提斯洋的俯冲作用及其岩浆作用产物。  相似文献   

8.
新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物   总被引:5,自引:5,他引:5  
新疆东准噶尔克拉麦里蛇绿岩中的镁铁质岩兼具有洋中脊玄武岩(MORB)和岛弧拉斑玄武岩(IAB)的特征,岩石地球化学特征表现为轻稀土(LREE)亏损、平坦或略微富集,不同程度地亏损高场强元素(HFSE)而富集大离子亲石元素(LILE),成分上非常相似于受洋脊俯冲影响的 Chile Ridge 和 Cocos Ridge 玄武岩。可以认为其可能形成于受洋脊俯冲影响的岛弧或弧前扩张环境。相对较高的ε_(Nd)(t)(7.2~9.8)、低 Nb/Zr、Ta/Yb 比值,说明在洋脊俯冲的影响下,其源区可能存在有至少三种组分:弧下地幔、来自消减板片流体和俯冲沉积物、MORB 地幔。  相似文献   

9.
木哈塔依蛇绿混杂岩位于新疆西准噶尔达拉布特蛇绿岩带北东端,蛇绿岩组合包括蛇纹石化及石英菱镁岩化方辉橄榄岩、玄武岩和硅质岩,蛇绿岩中侵入有辉长岩脉。对蛇绿岩开展了详细的岩相学、岩石地球化学、锆石UPb年代学和Hf同位素研究。玄武岩和辉长岩均为低钾拉斑玄武岩系列,两者同时具有轻稀土富集和弱亏损的EMORB和N-MORB的配分曲线,微量元素具有Ba、U、K、La、Ce等LILE相对富集,Nb、Ta、Th等HFSE相对亏损的特征,结合玄武岩中相对稳定的微量元素和氧化物构造判别图解,认为蛇绿岩形成于弧后盆地。玄武岩LA-ICPMS锆石U-Pb同位素年龄为(392.5)±2.9 Ma(n=26,MSWD=1.3),代表蛇绿岩形成年龄。玄武岩锆石εHf(t)值为+12.2~+15.1,Hf同位素地幔模式年龄t(DM)(407~543 Ma)与锆石形成年龄相近,指示玄武岩直接来源于亏损地幔,且没有遭受地壳物质的明显混染。地幔岩铬尖晶石化学成分和玄武岩Dy/Yb-La/Yb图解表明,地幔橄榄岩可能为亏损的尖晶石二辉橄榄岩发生25%~30%部分熔融的残余,而熔出的基性熔体为玄武岩和辉长岩的母岩浆。综合研究认为,达拉布特蛇绿岩所代表的西准噶尔洋盆为准噶尔洋北西俯冲形成的弧后盆地,洋盆在中志留世就已经存在并开始扩张,直到早石炭世洋盆依然存在,晚石炭世洋盆进入俯冲消减和闭合阶段。  相似文献   

10.
准噶尔、天山和北山52个蛇绿岩的地质特征、地球化学性质和同位素年代学资料系统集成研究表明它们可以分为14条蛇绿(混杂)岩带。绝大多数蛇绿岩呈"岩块+基质"的混杂岩型式沿重要断裂带(构造线)线状分布,少数蛇绿岩以构造岩片叠置方式面状产出。混杂岩的基质有蛇纹岩(碳酸盐化蛇纹岩)和糜棱岩化细碎屑岩两类,岩块既有地幔橄榄岩、基性杂岩和基性火山岩等蛇绿岩组分,也有其它非蛇绿岩组分岩石。堆晶岩出露局限,典型席状岩墙群没有发育。这些蛇绿岩可归类为SSZ(Supra-Subduction Zone)和MORB(Mid-Ocean Ridge)两种类型,前者玄武岩具大离子亲石元素(LILE)富集和高场强元素(HFS)亏损特征,后者不显示该特点;洋岛玄武岩(OIB)既可出现在SSZ型蛇绿混杂岩中,也可为MORB型的组成部分;SSZ型蛇绿混杂岩辉长岩和玄武岩比MORB型具有相对更富集的Sr-Nd同位素组成,但部分形成于弧后(间)盆地的SSZ型蛇绿岩与MORB型一致,具有近亏损地幔的Sr-Nd同位素组成。已确认的最老蛇绿岩为西准噶尔572 Ma玛依勒,次之为北山542~527 Ma月牙山—洗肠井和西准噶尔531 Ma唐巴勒,最年轻蛇绿岩为325 Ma北天山巴音沟和321 Ma北山芨芨台子。根据蛇绿岩证据,结合近年来中亚造山带古地磁、岩浆岩、高压—超高压变质岩和构造地质方面的进展,可以推断埃迪卡拉纪末期—早寒武世,古亚洲洋已达到一定规模宽度,发育洋岛和洋内弧;早古生代时期,多岛洋格局发育至鼎盛期,一系列弧地体分别归属哈萨克斯坦微陆块周缘的科克切塔夫—天山—北山线性弧、成吉思弧、巴尔喀什—西准噶尔弧体系和西伯利亚南部大陆边缘弧体系;晚古生代时期,古亚洲洋于石炭纪末期闭合,增生杂岩和弧地体组成哈萨克斯坦拼贴体系和蒙古拼贴体系两个巨型山弯构造。  相似文献   

11.
12.
我国中西部前陆盆地的特殊性和多样性及其天然气勘探   总被引:7,自引:0,他引:7  
通过对我国中西部前陆盆地构造特征、大地构造背景、地球物理特征的理论研究和典型前陆盆地的详细解析,系统分析了我国中西部前陆盆地的发育特征和特殊性。强调晚二叠世以来大小不一、形态各异的多块体小型克拉通的聚合碰撞作用是导致中西部前陆盆地群形成的基本动力学过程:这些小型克拉通的多块体聚合碰撞造就了中西部前陆盆地的特殊性和多样性。同时,明确提出中西部盆地的基本特点是“两期三类前陆盆地”,即海西一印支期前陆盆地和喜山期前陆盆地,三类指海西一印支期的周缘前陆盆地和弧后前陆盆地、喜山期再生前陆盆地。根据前陆盆地的盆地结构和演化特征,又将中西部的前陆盆地划分为4种组合形式,即叠合型组合、改造型组合、早衰型组合和新生型组合。综合论述了不同时期不同类型前陆盆地构造对天然气聚集的五大控制作用。  相似文献   

13.
铀钍的地球化学及对地壳演化和生物进化的影响   总被引:10,自引:2,他引:8  
本文论述了在含挥发份和贫挥发份条件下U、Th的迁移行为及其对地球和行星演化的影响,并阐述了造成地球独特地质演化历史的原因。提出了U、Th在地球中的迁移模式以及该模式对地壳形成、演化的控制作用和对生物发展演化的可能影响。  相似文献   

14.
从榴辉岩与围岩的关系论苏鲁榴辉岩的形成与折返   总被引:4,自引:1,他引:4       下载免费PDF全文
位于华北和扬子两板块碰撞带中的苏鲁榴辉岩形成的温压条件不但是超高压,而且是高温。榴辉岩的PTt轨迹表明其为陆-陆磁撞俯冲带的产物。榴辉岩的区域性围岩花岗质片麻岩为新元古代同碰撞期花岗岩,榴辉岩及其他直接围岩皆呈包体存在于其中,并见新元古代花岗岩呈脉状侵入榴辉岩包体中。区域性围岩新元古代花岗岩的锆石中发现有柯石英、绿辉石等包裹体,表明新元古代花岗岩的组成物质也经受过超高压变质作用,且榴辉岩与围岩新元古代花岗岩的锆石U-Pb体系同位素年龄基本相同。但新元古代花岗岩所记录的变质作用和变形作用期次(或阶段)却少于榴辉岩。椐上述可得如下推断:超高压榴辉岩与新元古代花岗岩岩浆是同时在碰撞带底部(俯冲板块前部)形成的;榴辉岩的第一折返阶段是由新元古代花岗岩岩浆携带上升的,其第二折返阶段是和新元古代花岗岩一起由逆冲及区域性隆起而上升,遭受剥蚀。  相似文献   

15.
16.
青藏高原综合观测研究站的回顾与展望   总被引:1,自引:1,他引:0  
赵林  郭东信 《冰川冻土》1998,20(3):287-292
中国科学院青藏高原综合观测研究站从1988年建站到1998年以来,在各个方面均取得了长足的发展,横向生产性项目的开展和完成不仅解决了部队和地方的实际问题,而且缓和了观测研究站在运行过程中所面临的经费严重不足的问题,同时也为我所冻土专业研究人员提供了在生产中实践的机会,在基础理论研究方面,承担了国家攀登计划项目,国家基金项目,中国科学院重点项目和中国科学院冰冻圈专项项目等的研究工作,在多年冻土变化,  相似文献   

17.
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.  相似文献   

18.
东南沿海及南海新生代火山作用与南海的形成演化   总被引:2,自引:1,他引:1  
中国东南沿海地区和南海海域新生代火山岩系列、类型和SrNd同位素特征十分相似,具有板内玄武岩的特征。根据南海扩张时代,将新生代的火山岩划分为扩张期前、扩张期和扩张期后3大阶段,并利用原生岩浆推导了软流圈岩石圈的一些深部作用特征。扩张期前(接近扩张期)和扩张期软流圈顶部埋深较浅。从扩张期前(接近扩张期)到扩张期软流圈顶部埋深变浅,隙间熔浆增加,原生岩浆的演化具有前进式裂谷火山作用的演化序列,岩石圈扩张速率变大。从扩张期到扩张期后(直至第四纪),软流圈顶部埋深逐渐变深,隙间熔浆减少,原生岩浆的演化表现出后退式裂谷火山作用的序列,岩石圈扩张速率逐渐变慢。新生代火山作用显示出的深部作用特征与南海的扩张和闭合一致,这为我们提供了南海形成和演化的深部作用证据。  相似文献   

19.
青海共和盆地,是青藏高原东北部晚新生代期间形成的北西西—南东东走向构造盆地,由西北部的茶卡小内流盆地,中部非典型的达连海内流盆地和东南部被黄河及其支流深深切割的外流盆地三部分组成.该盆地中充填了上、下两套厚度普遍均在200~300 m间,而最厚部分可达500~600 m的相互叠置的共和组与曲沟组河湖相地层.由这两套湖相地层所重建的古湖被分别称为早期和晚期共和古湖.本文重点讨论的是基于共和组湖相地层而重建的晚期共和古湖.石英热活化法ESR测年结果表明,湖相共和组地层开始形成于(4.31±0.40)Ma之前,持续到(2.58±0.20)Ma/(2.54±0.20)Ma之后的上新世时期.以尕玛羊曲村附近为顶点的黄河扇三角洲相两套均厚逾200 m砾石层中之上砾石层,形成于(3.15±0.30)—(3.07±0.30)Ma之间,其前缘水下三角洲相砾石层为(2.91±0.25)Ma,而来自北部山前的同期洪积砾石层则为(2.97±0.27)Ma,表明晚期共和古湖在(3.07±0.30)Ma与(2.91±0.15)Ma之间的上新世晚期达到其最盛期.此时,湖面高度达到其最大值海拔(3160±10)m左右,古湖是一个面积近7000 km2、深逾300 m的大型外流的淡水深湖.黄河在尕玛羊曲附近注入古湖,并由盆地东北角的尕海以东流出,经唯一通道古多隆河流入贵德古湖.当古湖面上升到超过共和与贵德两盆地的基岩分水岭时,黄河在现今的龙羊峡位置切割出新的河道——龙羊峡,从而导致了早更新世初古多隆河因"截弯取直"而非"溯源侵蚀"被废弃,开始了黄河逐步下切、T21到T16形成与共和古湖逐渐消亡的过程.共和古湖经历了茶卡盆地开始与古湖主体分离,中部湖区与东南部湖区分离、排干和东南部湖区被完全泄空等3个阶段.这一过程是随着中国区域地壳运动性质发生的根本性变化而发生的.此时,共和盆地及邻近盆地,甚至中国第一、二大地势阶梯上的大多数盆地,除银川—河套盆地与汾渭盆地等个别盆地外,都由差异性升降的盆-山运动转为整体性的隆升运动.发生于共和盆地的这一运动,曾被徐叔鹰等命名为"恰卜恰(共和)运动",只是其所指的时代为中更新世晚期.但这一名称被李吉均等改称为"共和运动",作为青藏运动的延续,意指黄河于10或15万年前因该运动而切穿龙羊峡,溯源至共和盆地.作者建议保留原"恰卜恰(共和)运动"的名称与基本含义,而该运动发生时间的争议仍待今后进一步深入研究解决.  相似文献   

20.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号