首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   

2.
Systematic geochemical studies have been conducted on the North Küda Pluton, West Kunlun, in order to reveal its petrogenesis and tectonic implications. The North Küda Pluton is a potassium-rich (K2O>5.4wt% ) I-type granitic pluton and does not contain any alkaline ferromagnesian mineral. Its relatively high REE, LILE (e.g. Rb, Cs, U and Th) and HFSE (e. g. Nb, Zr) contents make it very akin to the A-type granites. Its heterogeneous Sr (87Sr/86Sri = 0.7049∼0.7098) and Nd (εNdT= −1.05∼−4.04) isotope compositions preclude the possibility of a pure sedimentary or igneous source. Instead, its geochemical compositions suggest that it may be derived from partial melting of a complex source, which consists of igneous and sedimentary rocks. Its intraplate characteristics, together with coeval mafic dykes, indicate an extensional environment at the end of Caledonian. The recognition of the extensional event does not support a continuous subduction-accretion model for the Paleozoic tectonic evolution of the West Kunlun Mountains. On the contrary, it provides new evidence for the twostage island-arc model.  相似文献   

3.
We present new U/Pb and Pb/Pb radiometric age data from two tectono-stratigraphic units of the regionally extensive Bolu Massif, in the W Pontides (İstanbul Fragment), N Turkey. A structurally lower unit (Sünnice Group) is cut by small meta-granitic intrusions, whereas the structurally higher unit comprises meta-volcanic rocks (Çaşurtepe Fm) cut by meta-granitic plutons (Tüllükiriş and Kapıkaya plutons). U/Pb single-crystal dating of zircons from the Kapıkaya Pluton yielded a concordant cluster, with a mean 238U/206Pb age of 565.3 ± 1.9 Ma. Zircons from the Tüllükiriş Pluton (affected by Pb loss) gave a 207Pb/206Pb age of 576 ± 6 Ma age (Late Precambrian). Small meta-granitic intrusions cutting the Sünnice Group yielded a less precise 207Pb/206Pb age of 262 ± 19 Ma (Early Permian). The older ages from the Bolu Massif confirm the existence of latest Precambrian arc magmatism related to subduction of a Cadomian ocean. We infer that the Bolu Massif represents a fragment of a Cadomian active margin. Cadomian orogenic units were dispersed as exotic terranes throughout the Variscan and Tethyan orogens, and the Bolu Massif probably reached its present position prior to latest Palaeozoic time. Our dating results also confirm that NW Turkey was affected by Hercynian magmatism related to subduction of Palaeotethys, as inferred for other areas of the Pontides.  相似文献   

4.
GOLDIE  R. 《Journal of Petrology》1979,20(2):227-238
The Archaean Flavrian and Powell Plutons are believed to beportions of a single intrusion which has been tectonically disrupted.Both plutons were metamorphosed during the Kenoran Orogeny.The metamorphic minerals formed in the Flavrian Pluton at thistime survived later retrograde metamorphism because this plutonconsists mostly of massive rocks. In the Powell Pluton, however,pervasive fracturing permitted recrystallization of the originalmetamorphic minerals. A model system of 10 components, 10 mineral phases, and CO2and H2O provides a suitable basis for mapping isograds in theFlavrian Pluton. According to this model, the stability of amineral assemblage is controlled by temperature and fluid composition;and the distribution of mineral assemblages is related to variationsin these parameters. Application of the model to the plutonsrevealed the presence of 3 areas of high metamorphic temperatures,and a zone where the fluid composition was relatively high inCO2.  相似文献   

5.
黑龙江虎林岩体的锆石U——Pb 年龄及地质意义   总被引:1,自引:0,他引:1  
胥嘉  邢德和  杨浩  张彦龙 《世界地质》2012,31(4):631-637
通过虎林石青山采石场角闪花岗闪长岩的锆石U-Pb LA-ICPMS 年龄测定,确定了虎林岩体形成于118 Ma 的早白垩世晚期。根据该岩体的岩石学和地球化学特征及区域构造演化研究资料,认为虎林岩体的形成与太平洋板块的俯冲作用有关。  相似文献   

6.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

7.
北大巴山凤凰山岩体锆石U Pb LA ICP MS年龄及其构造意义   总被引:1,自引:0,他引:1  
北大巴山凤凰山岩体是扬子陆块北缘典型的新元古代侵入岩群,对采自岩体的6个花岗岩(闪长岩)样品进行了LA-ICP-MS锆石U-Pb同位素定年分析。定年数据显示,岩浆活动可分为早期(797±6Ma)、中期(770±6Ma、774±5Ma)、晚期(755±6Ma、750±13Ma和743±6Ma)三个阶段,证实凤凰山岩体为多期岩浆侵入形成。这几期岩浆活动在扬子陆块具同步性和普遍性,广泛被记录在黄陵、汉南等其它新元古代杂岩中。凤凰山花岗岩完整记录了扬子陆块北缘南华纪初期的区域拉张—裂陷事件,其形成可能与导致Rodinia超大陆裂解作用的幕式地幔柱活动有关。本次研究对认识扬子陆块新元古代地壳生长与再造过程及Rodinia超大陆裂解机制具有重要意义。  相似文献   

8.
The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of ~0.46?GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite and numerous dykes cross-cutting the different units, allow reconstruction of a more refined chronology of the calc-alkaline and alkaline magmatic series. High precision zircon geochronology yields an age of 33.00?±?0.04?Ma for the central tonalitic part of the Miagliano Pluton and 30.39?±?0.50?Ma for the granitic core of the Valle del Cervo Pluton. The difference in age combined with cooling data and intrusion depth indicates dissimilar tectonic transport east and west of the Canavese Line. The earlier emplaced Miagliano Pluton has to be exhumed from an intrusion depth of ~12?C15?km, whereas the neighbouring and younger Valle del Cervo Pluton is exhumed from a depth of 5?C7?km. This tectonic scenario is related to upper crustal rigid block rotation responsible for the burial of the lowermost Rupelian paleosurface of the Sesia?CLanzo Zone. Thus, the new ages constrain the paroxysm of the orogenic magmatism in the internal Western Alps to an extremely short lapse of time in the first half of the Rupelian.  相似文献   

9.
The A-type Mayurbhanj Granite Pluton (3.09 Ga), occurring along the eastern margin of the Singhbhum-Orissa Craton, eastern India, represents the final phase of acid plutonism in this crustal block of Archean age. The granite shows a bimodal association with a voluminous gabbroid body, exposed mainly along its western margin, and is associated with the Singhbhum Shear zone. The granite pluton is composed mainly of a coarse ferrohastingsite–biotite granite phase, with an early fine-grained granophyric microgranitic phase and a late biotite aplogranitic phase. Petrogenetic models of partial melting, fractional crystallisation and magma mixing have been advocated for the evolution of this pluton. New data, combined with earlier information, suggest that two igneous processes were responsible for the evolution of the Mayurbhanj Granite Pluton: partial melting of the Singhbhum Granite; followed by limited amount of mixing of acid and basic magmas in an anorogenic extensional setting. The necessary heat for partial melting was provided by the voluminous basaltic magma, now represented by the gabbroid body, emplaced at a shallow crustal level and showing a bimodal association with the Mayurbhanj Granite Pluton. The Singhbhum Shear Zone provided a possible channel way for the emplacement of the basic magma during crustal extension. It is concluded that all three phases of the Mayurbhanj Granite Pluton were derived from the same parent magma, generated by batch partial melting of the Singhbhum Granite at relatively high temperatures (980 °C) and low pressures (4 to <2 kbar) under anhydrous conditions. The coarse ferrohastingsite biotite granite phase shows evidence of limited and heterogeneous assimilation of country rock metasediments. However, the early microgranite phase and late aplogranite phase have not assimilated any metasediments. Compositional irregularities observed along the western margin of the Mayurbhanj Granite Pluton in contact with the gabbro body including a continuous fractionating sequence from quartz diorite to alkali-feldspar granite in the Notopahar area. Gradational contacts between the gabbro and the Mayurbhanj Granite Pluton in the Gorumahisani area etc., may be attributed to a limited amount of mixing between the gabbroid magma and the newly generated Mayurbhanj Granite magma. The mixing was mainly of liquid–liquid diffusive type, with a subordinate amount of mixing of solid–liquid type. Although A-type granites are commonly described as having high total REE (e.g. 270–400 ppm), studies on the late aplogranite phase of the Mayurbhanj Granite show that total REE values (100 ppm) are low. This low REE abundance may be attributed to the progressive residual nature of the Singhbhum Granite source during continued partial melting, when the magmas of the microgranite and coarse granite phases had already been removed from the source region.  相似文献   

10.
Granitoid plutons are often difficult to radiometrically date precisely due to the possible effects of protracted and complex magmatic evolution, crustal inheritance, and/or partial re-setting of radiogenic clocks. However, apart from natural/geological issues, methodological and analytical problems may also contribute to blurring geochronological data. This may be exemplified by the Variscan Karkonosze Pluton (SW Poland). High-precision chemical abrasion (CA) ID-TIMS zircon data indicate that the two main rock types, porphyritic and equigranular, of this igneous body were both emplaced at ca. 312 Ma, while field evidence points to a younger age for the latter. This is in contrast to the earlier reported SIMS (SHRIMP) zircon dates that scattered mainly between ca. 322 and 302 Ma. In an attempt to overcome this dispersion, at least in part caused by radiogenic lead loss, the CA technique was used before SHRIMP analysis. The 206Pb/238U age obtained in this way from a sample of porphyritic granite is 322 ± 3 Ma, ~16 Ma older than the untreated zircons; another porphyritic sample yielded a mean age of 319 ± 3 Ma, and the mean age was 318 ± 4 Ma for an equigranular granite sample – all three somewhat older than the age obtained by ID-TIMS. Older SIMS dates of ca. 318–322 Ma might indicate either faint inheritance or that zircon domains crystallized during earlier stages of Karkonosze igneous evolution. The ID-TIMS results have been used to re-assess the whole-rock Rb–Sr data. Excluding a porphyritic granite with excess radiogenic 87Sr, it appears that isotopic homogeneity was achieved for most samples during the 312 Ma event, as shown by a pooled 21-point isochron with an age of 311 ± 3 Ma and an initial 86Sr/86Sr of 0.7067 ± 4. Local crustal contamination by stopping of metapelitic material might account for the more radiogenic Sr isotope signature observed in biotite-rich schlieren. A critical re-evaluation of all available SHRIMP data using the ID-TIMS age of 312 Ma as a benchmark suggests that the observed scatter may be partly attributed to analytical and methodological problems, in particular failing to distinguish subtly discordant spots from truly concordant ones, which is a serious limitation of the microbeam analytical approach. Other likely pitfalls contributing to geochronological scatter are identified in the published Re–Os ages on molybdenite and the 40Ar/39Ar data on micas. A scenario postulating a 15–20 milliion year evolution of the Karkonosze Pluton cannot be established on the basis of available geochronological data, which rather supports a brief igneous event, although a more protracted pre-emplacement evolution is possible. A short timescale for crystallization of large igneous bodies, as suggested by the ID-TIMS data from the Karkonosze Granite, is in line with models of transport of granitic magmas through dikes to form large plutons.  相似文献   

11.
The Slaufrudalur Pluton is a granitic pluton in the Tertiary lava pile of Southeast Iceland. Excellent exposures of its roof and walls made it possible to map the shape of the pluton with high-resolution GPS. Based on the GPS mapping and field observations, we reconstructed the three-dimensional shape of the Slaufrudalur Pluton with the aim to test which implications on the mechanisms of emplacement can be derived from this approach. The reconstructed pluton shape is characterised by steep walls and a flat roof at map-scale. This shape and the internal compositional layering indicate that the pluton was probably emplaced by cauldron subsidence along subvertical faults that are parallel with the strike of the regional fissure swarms. At the roof contact, the pluton exploited the original layering of the flood basalts. At outcrop-scale, however, the roof was modified by magmatic stoping, which resulted in a step-like pattern on a scale that cannot be resolved in the three-dimensional model. Hence, the reconstruction of the three-dimensional shape of the Slaufrudalur Pluton, combined with structural field studies, provided valuable information about the mechanism of its emplacement on pluton-scale. For a comprehensive understanding of all mechanisms involved in the emplacement of the Slaufrudalur Pluton, detailed structural field studies remain essential.  相似文献   

12.
The South Ushkoty eluvial kaolin deposit discovered and explored by the authors is situated 20 km away from the railway in the Dombarov district of the Orenburg region. The deposit is localized in the axial zone of the East Ural Uplift. Leucogranites of the Upper Ushkoty Pluton serve as bedrocks. The deposit comprises five lodes, among which the largest deposit has a reserve of 40 Mt. The lodes are erosion remnants of the well-developed linear-areal weathering zone related to the fragments of Mesozoic peneplain at the hypsometric level not lower than 360 m. Variation of the kaolin zone thickness, the entire weathering zone, and the deposit morphology is largely governed by the nearly meridional and northeastern faults. Two productive zones—the normal kaolin (kaolinite + quartz) zone and the alkaline kaolin (kaolinite + quartz + potassium feldspar and/or muscovite) zones—are recognized in the weathering profile of leucogranites of the Upper Ushkoty Pluton. The alkaline kaolin is of commercial significance as a complex raw material if the potassium oxide content is above 3.5%. The composition and properties of the concentrated kaolin meet the requirements of its traditional consumers (fine ceramic works, paper mills, and others). The discovery of the South Ushkoty deposit confirmed the previous forecast on considerable prospects of the Orsk Transural region for kaolin. We hope that this discovery will stimulate the further investigation and assessment of resources in the Mugodzhary kaolin-bearing subprovince.  相似文献   

13.
巴音勿拉山岩体位于华北克拉通北部,白乃庙岛弧岩带南部,锆石LA-ICP-MS U-Pb定年结果及锆石特征表明其侵位时代为(410.9±1.2)Ma。岩体岩石组合为一套正长岩杂岩,富钾富碱,铝质量分数较高,属偏铝质岩石。地球化学特征表明岩浆源区为岩石圈地幔,岩浆演化过程中下地壳的同化作用显著。其形成与白乃庙岛弧岩带与华北克拉通碰撞后的伸展作用有关。  相似文献   

14.
The northern part of Central India Tectonic Zone (CITZ) is delineated by an arc-shaped supracrustal belt commonly referred to as Mahakoshal Belt, which is considered as a product of intense rifting of sialic crust that occurred at ca 2400–2600 Ma. Several granitoid plutons intrude the Parsoi Formation of Mahakoshal Belt. Among these, an elliptical small stock-like granitoid body trending E–W is exposed in and around Jhirgadandi region of Mahakoshal Belt, referred herein as Jhirgadandi Pluton. It is composed of minor amount of mafic rocks (diorite) and predominant granitoids. Country-rock pelitic xenoliths and microgranular enclaves (ME) are commonly hosted in granitoids but are absent in diorite. The ME exhibit typical magmatic texture with a Bt(±Cpx ± Hbl)-Pl-Kf-Qtz-Mag-Ap assemblage, similar to that in host granitoids but with contrasting mineral proportions. Whole-rock molar Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of diorite (0.63–0.72), ME (0.69–1.21) and granitoids (0.83–1.05) suggest their nature largely metaluminous (I-type) to rarely peraluminous (S-type) granitoids. On most binary plots involving silica, two distinct compositional paths can be recognized; one formed by an array of differentiating diorite and ME, and another by fractionating granitoids gradually depleting in compatible elements. It is most likely that ME were generated by progressive and concurrent mixing of coeval pristine mafic (diorite) and granitoid magmas and fractionation processes. However, coherent and identical trace elements (except for Sr, Th, Y and Ni) and REE patterns for ME-granitoid pairs most likely suggest partial to near-complete chemical equilibration through varying degrees of diffusion process across the ME – partly crystalline host granitoid boundary. High-precision U–Pb SHRIMP zircon 206Pb/238U ages for ME (1758 ± 19 Ma) and host granitoid (1753 ± 9.1 Ma) from Jhirgadandi Pluton further support the notion that they were coeval. The obtained age (∼1750 Ma) of Jhirgadandi Pluton also points to the existence and role of Super-Columbian continental component in the evolution of Mahakoshal Belt of the CITZ.  相似文献   

15.
The emplacement of the Mesoproterozoic G?temar Pluton into Paleoproterozoic granitoid host rocks of the Transscandinavian Igneous Belt is re-examined by microfabric analysis, including cathodoluminescence microscopy. Field data on the pluton-host rock system are used to strengthen the model. The G?temar Pluton, situated on the Baltic Shield of SE Sweden, is a horizontally zoned tabular structure that was constructed by the intrusion of successive pulses of magma with different crystal/melt ratios, at an estimated crustal depth of 4–8?km. Initial pluton formation involved magma ascent along a vertical dike, which was arrested at a mechanical discontinuity within the granitoid host rocks; this led to the formation of an initial sill. Subsequent sill stacking and their constant inflation resulted in deformation and reheating of existing magma bodies, which also raised the pluton roof. This multi-stage emplacement scenario is indicated by complex dike relationships and the occurrence of several generations of quartz (Si-metasomatism). The sills were charged by different domains of a heterogeneous magma chamber with varying crystal/melt ratios. Ascent or emplacement of magma with a high crystal/melt ratio is indicated by syn-magmatic deformation of phenocrysts. Complex crystallization fabrics (e.g. oscillatory growth zoning caused by high crystal defect density, overgrowth and replacement features, resorbed and corroded crystal cores, rapakivi structure) are mostly related to processes within the main chamber, that is repeated magma mixing or water influx.  相似文献   

16.
The molybdenite and scheelite mineralisation in the Native Dog Pluton at Monkey Gully near Yea is hosted within an I-type (post-orogenic) pluton, which shows extensive fractionation and magma mixing, and was emplaced in an extensional environment. The pluton comprises four principal rock types: tonalite, granodiorite, dacite and leucogranite. Emplacement of the pluton was in an extensional northwest to southeast paleostress field. Early extensional quartz veins, related to cooling, are overprinted by both dacitic dykes and late-stage quartz sheeted veins. The late-stage veins host the molybdenum and tungsten mineralisation in the deposit. 206Pb/238U zircon ages of 356 ±14 Ma and 375 ± 22 Ma place pluton formation and mineralisation at the onset of the Kanimblan Orogeny and later than other major molybdenum deposits in Victoria. Key factors governing the source for the granite and its associated mineralisation are: (1) the presence of a highly fractionated and sulfur-rich leucogranite; and (2) the pluton's location in a regional jog overlying the Selwyn basement block. Finally, a model is developed to explain the differences between this Melbourne Zone molybdenum and tungsten deposit compared with other metallogenic porphyry deposits.  相似文献   

17.
Two felsic plutons of Late Devonian (385–370 Ma) age in the Meguma Zone of southwestern Nova Scotia contain three circa 376 Ma synplutonic mafic-intermediate intrusions that collectively record progressive stages of in situ hybridisation. A 5 m wide spessartite dyke in the Port Mouton Pluton probably underwent rapid cooling and crystallisation immediately after intrusion, which heated and coarsened the adjacent tonalite. An 85 m long sheet of pillowed kersantite (also in tonalite of the Port Mouton Pluton) presumably contained residual magma after quenching and obtained K, P, Ba, Rb, more radiogenic Sr, Zr, Nb, and light REE from the tonalite during magma mingling. The third synplutonic body, a >100 m wide diorite sheet, intrudes granodiorite of the adjacent Shelburne Pluton and has a circa 45 m wide gradational contact of metaluminous hornblende-tonalite. This tonalite dominantly records magma mixing by the transfer of Ti, Mg, Fe, Ca, and V in hornblende, biotite, plagioclase, and (at least in part) apatite xenocrysts derived from dioritic pillows that were originally disaggregated in the granodiorite, probably in response to convection. Scattered data points, unusual “concave-down” variation trends for Al2O3, P2O5, and Sr, and non-hyperbolic Sr-Nd isotopic characteristics in the tonalite, apparently reflect syn- or post-mixing fractionation and accumulation of xenocrysts from residual magma. Phosphorus may have assisted diffusion of Sr, Zr, Nb, and light REE, and caused premature quenching of the hybrids at Mcleods Cove and Birchtown, during magma mingling and mixing. Received: 1 January 1996 / Accepted: 3 August 1996  相似文献   

18.
藏南冈底斯带西段麦拉花岗岩锆石SHRIMP定年及地质意义   总被引:1,自引:0,他引:1  
用SHRIMP测定了冈底斯岩带西段麦拉山口岩体同碰撞黑云母二长花岗岩锆石的U-Pb年龄,黑云母二长花岗岩锆石SHRIMP U-Pb年龄为47.1±1.1Ma。这就为前人提出的雅鲁藏布江地区洋盆闭合、板块开始碰撞的时间为50Ma左右提供了同位素年代学的证据。  相似文献   

19.
The peraluminous tonalite–monzogranite Port Mouton Pluton is a petrological, geochemical, structural, and geochronological anomaly among the many Late Devonian granitoid intrusions of the Meguma Lithotectonic Zone of southern Nova Scotia. The most remarkable structural feature of this pluton is a 4-km-wide zone of strongly foliated (040/subvertical) monzogranites culminating in a narrow (10–30 m), straight, zone of compositionally banded rocks that extends for at least 3 km along strike. The banded monzogranites consist of alternating melanocratic and leucocratic compositions that are complementary to the overall composition of that part of the pluton, suggesting an origin by mineral–melt and mineral–mineral sorting. Biotite and feldspar are strongly foliated in the plane of the compositional bands. These compositional variations and foliations originated by a process of segregation flow during shearing of the main magma with a crystallinity of 55–75%. Subsequent minor brittle fracturing of feldspars, twinning of microcline, development of blocky sub-grains in quartz, and kinking of micas demonstrate overprinting by a high-temperature deformation straddling the monzogranite solidus. Small folds and late sigmoidal dykes indicate dextral movement on the shear zone. This Port Mouton Shear Zone (PMSZ) is approximately co-linear with the only outcrops of Late Devonian mafic intrusions in the area, two of which are syn-plutonic with well-developed mingling textures in the marginal tonalite of the Port Mouton Pluton. Also closely co-linear with the mafic intrusions are a granitoid dyke that extends well beyond the outer contact of the Port Mouton Pluton, a swarm of large aligned angular xenolithic slabs, a zone of thin wispy schlieren banding, a large Be-bearing pegmatite, and a breccia pipe with abundant garnetiferous metapelitic xenoliths. In various ways, the shear zone may control all of these features. The Port Mouton Shear Zone is parallel to many other NE-trending faults and shear zones in the northern Appalachians, probably related to the docking of the Meguma Zone along the Cobequid–Chedabucto Fault system.  相似文献   

20.
兴蒙造山带北缘晚古生代的构造格局,尤其是洋盆的闭合时限一直存在争议,兴安地块南的乌兰复合岩体为解决这一问题提供了一个良好的研究窗口。对乌兰复合岩体进行了锆石U-Pb测年与地球化学特征研究,确定了其形成时代与岩石成因,进而揭示了区域构造背景。乌兰复合岩体由细粒二长花岗岩和斑状二长花岗岩组成,前者构成了岩体的主体,成岩年龄为(312±2) Ma,形成时代为晚石炭世早期。地球化学特征显示: 细粒二长花岗岩和斑状二长花岗岩均具有全碱含量中等、富钾、过铝质的特征,为高钾钙碱性系列的高分异S型花岗岩,且细粒二长花岗岩的稀土含量偏低,负Eu异常更明显,显示了更高的分异演化特征; 细粒二长花岗岩和斑状二长花岗岩均富集大离子亲石元素(Rb、Th及K),显著亏损Ba、Sr、Ti等元素,弱亏损Ta、Nb等元素,具有相似的微量元素与稀土元素分布特征,指示二者来自于同一源区。乌兰复合岩体的形成与古亚洲洋的演化有关,形成于洋盆闭合后的造山晚期伸展环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号