首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
冀东分水岭岩体位于马兰峪隆起西段,为复式岩体,其岩性为花岗闪长岩和黑云母二长花岗岩,花岗闪长岩呈带状环绕黑云母二长花岗岩分布,锆石U-Pb定年揭示其年龄分别为157.4±2.7Ma和162.0±4.0Ma。花岗闪长岩的SiO_264.50%~65.56%,K_2O+Na_2O 7.24%~7.70%,K_2O/Na_2O 0.58~0.67,A/CNK0.91~0.97,呈高硅富钾,属准铝质高钾钙碱性系列,为I型花岗岩;而黑云母二长花岗岩SiO_273.25%~74.56%,K_2O+Na_2O 7.22%~8.58%,K_2O/Na_2O 0.86~1.04,A/CNK 1.09~1.24,较花岗闪长岩更富硅、钾,为过铝质高钾钙碱性系列,属成熟度不高的A型花岗岩。两者稀土配分曲线呈右倾型式,具稀土总量较低,轻重稀土分馏明显,微量元素均亏损Nb-Ta、Zr-Hf,显示以壳源成分为主,具幔源混染特征。花岗闪长岩具弱Eu正异常,且富集Sr,源区深度较大;而黑云母二长花岗岩具Eu负异常,亏损Sr,源区有少量斜长石残留。岩体形成与太平洋板块俯冲构造背景密切相关,为中生代构造转换体制的产物。  相似文献   

2.
辽东王家堡子地区出露大量古元古代花岗质岩石,前人将其统称为花岗质混杂岩。通过详细的野外地质调查和室内综合研究,将该套花岗质混杂岩解体为条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩两类。岩石地球化学分析结果显示二者具有一致的地球化学特征。均显示高SiO_2、富K_2O、贫Al_2O_3的特征,K_2O/Na_2O=0.64~2.14,TiO_2含量为0.16%~0.3%,MnO、MgO、CaO和P_2O_5的含量较低,铝指数A/CNK集中分布在1.06~1.1之间,A/NK在1.50~1.62之间,均属于过铝质高钾钙碱性系列;微量元素显示强烈亏损Nb、Ti、Ta等高场强元素,富集Rb、U、K等大离子亲石元素,具有明显的负Eu异常,具有A型花岗岩的特征。条痕状黑云母二长花岗岩大部分锆石为具有清晰振荡环带的岩浆锆石,LA-ICP-MS锆石U-Pb年龄为2188±13Ma,代表该岩石的岩浆结晶年龄。片麻状黑云母二长花岗岩大部分锆石具有明显的变质增生边,部分核部锆石具有清晰的振荡环带,LA-ICP-MS锆石U-Pb测年获得核部年龄为2214±16Ma,代表该岩石的岩浆结晶年龄;增生边年龄为1905±13Ma,应代表该岩石的变质年龄。条痕状黑云母二长花岗岩和片麻状黑云母二长花岗岩的Hf同位素模式年龄分别为2387~2584Ma和2474~2641Ma,平均地壳模式年龄分别为2495~2808Ma和2633~2868Ma,大于岩石形成年龄,暗示研究区古元古代花岗岩源区主要为太古宙基底,混有少量古元古代新生地壳。结合前人报道的埃达克质花岗闪长岩的形成环境,认为胶-辽-吉古元古代造山/活动带早期经历了2.2~2.15Ga的拉伸裂解过程和2.0Ga左右俯冲挤压的构造演化过程。  相似文献   

3.
辽宁兴城新立屯地区岩浆杂岩主要由4种不同的岩石单元组成,分别为似斑状黑云母二长花岗岩,中细粒石英闪长岩,花岗细晶岩和花岗伟晶岩,前两者分布广泛且为研究区的主要岩石单元,后两者则呈脉状侵入到前两者中。应用LA-ICP-MS锆石U-Pb定年方法,测得似斑状黑云母二长花岗岩,中细粒石英闪长岩及花岗细晶岩的年龄分别为2 496±18 Ma,2 490±19 Ma,2 479±29 Ma,形成于古元古代早期。结合野外地质特征,侵位顺序由早到晚依次为:似斑状黑云母二长花岗岩,中细粒石英闪长岩,花岗细晶岩,花岗伟晶岩。岩石地球化学特征显示,新立屯地区岩浆杂岩主量元素方面具高硅(SiO2=61.38%~74.99%),富碱(Na2O+K2O=6.86%~9.41%),富Mg#(56~70)特征;A/CNK=0.91~1.18,属准铝质-过铝质岩石;微量元素方面,相对富集轻稀土元素,亏损重稀土元素,具有Eu异常(δEu=0.50~0.96);富集大离子亲石元素,亏损高场强元素;锆石Lu-Hf同位素特征εHf(t)值为-1.12~+6.13;TDM2(Hf)介于2 594~2 937 Ma,显示该套岩浆杂岩可能为地幔物质加入新生地壳再造的产物。  相似文献   

4.
北山南带沙枣园复式岩体由中细粒黑云母花岗闪长岩、细粒黑云母石英闪长岩、中粒黑云母二长花岗岩和中粗粒黑云母正长花岗岩4个岩相单元组成。LA-ICP-MS锆石U-Pb定年结果表明,中细粒黑云母花岗闪长岩、细粒黑云母石英闪长岩和中粒黑云母二长花岗岩侵位于晚二叠世(252.1±1.9Ma、252.2±2.1Ma和248.8±3.5Ma),为海西晚期的产物;而中粗粒黑云母正长花岗岩侵位于早三叠世(246.4±2.0Ma),为印支早期的产物。该花岗质岩石均具有稀土元素的球粒陨石标准化配分曲线呈右倾型,轻重稀土分馏大,轻稀土富集且分异明显,而重稀土亏损且分异不显著特征。中细粒黑云母花岗闪长岩和细粒黑云母石英闪长岩具有较高的SiO_2、Al_2O_3和Na_2O含量,以及较低的MgO含量,强烈富集Sr而亏损Yb和Y,具轻微的铕异常(δEu=0.75~1.16),表现出典型的埃达克岩特征;中粒黑云母二长花岗岩和中粗粒黑云母正长花岗岩总体富硅(SiO_2)、富钾(K_2O)、富碱(K_2O+Na_2O),Al_2O_3含量中等,铕分别呈现负异常(δEu=0.45~0.73)和强负异常(δEu=0.02~0.08)。年代学及地球化学特征研究表明:①中细粒黑云母花岗闪长岩和细粒黑云母石英闪长岩属准铝质-弱过铝质的钙碱性Ⅰ型花岗岩,并具有典型的埃达克岩特征,中粒黑云母二长花岗岩属弱过铝质的高钾钙碱性Ⅰ型花岗岩,中粗粒黑云母正长花岗岩属弱过铝质的高钾钙碱性A2型花岗岩;②中细粒黑云母花岗闪长岩、细粒黑云母石英闪长岩和中粒黑云母二长花岗岩的岩浆来源于下地壳玄武质岩石部分熔融源区,并在上升过程中混染了下地壳物质,而中粗粒黑云母正长花岗岩的岩浆来源于年轻地壳中富含黑云母的变质泥岩部分熔融源区;③中细粒黑云母花岗闪长岩、细粒黑云母石英闪长岩和中粒黑云母二长花岗岩是俯冲-碰撞构造背景条件下的岩浆产物,而中粗粒黑云母正长花岗岩是同碰撞-碰撞后构造背景条件下的岩浆产物。  相似文献   

5.
东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义   总被引:9,自引:0,他引:9  
龙晓平  金巍  葛文春  余能 《地球化学》2006,35(4):367-376
金水口岩体出露于东昆仑北坡,岩性主要为含石榴子石的过铝花岗岩和不含石榴子石的二长花岗岩及花岗闪长岩。自该岩体从金水口群解体以来,其形成时代一直制约着该地区构造演化的恢复。对锆石内部结构、阴极发光图像特征和Th/U比值的研究表明,金水口岩体中锆石主要为岩浆锆石,个别含有残留锆石核。锆石U-Pb同位素LA-ICPMS和SHRIMP原位分析结果显示,金水口电站周围的石榴堇青花岗岩及黑云母花岗闪长岩形成年龄分别为(411±17)Ma和(396±18)Ma,说明金水口岩体为早泥盆世的花岗质侵入体,是在早古生代末由柴达木地块基底富Si和Al的地壳物质重熔的产物。该套S型花岗岩记录了古元古代的两期源区物质信息(约1.63Ga和约1.78Ga),代表了东昆仑造山带早古生代末期的一期重要岩浆热事件。  相似文献   

6.
赵玉梅 《地质与勘探》2016,52(2):271-282
克孜勒花岗岩体位于新疆阿尔泰南缘西伯利亚和哈萨克斯坦-准噶尔板块的结合部位,岩体呈不规则圆形的岩基产出,主要岩石类型为石英闪长岩、花岗闪长岩、花岗岩、二长花岗岩、黑云母二长花岗岩。黑云母二长花岗岩的LA-ICP-MS锆石U-Pb年龄为289.5±4.3Ma,表明岩体形成于早二叠世。岩体具有高硅(SiO_2=70.05%~75.78%)、高碱(K_2O=3.32%~5.70%,Na_2O=3.07%~4.48%)、富铝(Al_2O_3=12.49%~14.04%)和低MgO(0.01%~0.72%)、CaO(0.36%~1.60%)、TiO_2(0.03%~0.45%)、P_2O_5(0.07%~0.15%)特征,A/CNK=1.08~1.20,高FeO_T/MgO比值(平均44.95);富集Rb、Th、K、La、Ce,强烈亏损Ba、Sr、Nb、Ti,铕负异常明显(δEu=0.03~0.36);具有I-A过渡特点的高分异钙碱性花岗岩体。克孜勒花岗岩体可能是区域上"双峰式"岩浆组合中的酸性端元,为典型的后碰撞岩体,是后碰撞拉张背景下幔源岩浆发生底侵作用导致大陆地壳生长过程的产物。  相似文献   

7.
胡培远  李才  吴彦旺  解超明  王明  李娇 《岩石学报》2016,32(4):1219-1231
本文报道了羌塘中部冈玛错钾长花岗岩的锆石U-Pb定年、岩石地球化学和锆石Hf同位素分析结果。钾长花岗岩中的锆石具岩浆生长环带,未见继承的老核,并且锆石Th/U比值大于0.5(0.58~1.05),显示出典型岩浆成因的锆石特征。锆石LA-ICP-MS定年结果为352.4±1.9Ma,表明其形成时代为早石炭世。钾长花岗岩富硅(Si O_2=74.17%~77.88%),低铝(Al2O3=10.50%~11.98%),贫镁(Mg O=0.23%~0.36%),富碱(Na_2O+K_2O=5.74%~7.24%),Na_2OK_2O,K_2O/Na_2O=0.53~0.71,A/CNK=0.87~1.06,富集轻稀土元素和Zr、Hf、Rb、Th和U等元素,亏损Sr、Eu、P和Ti等元素,10000Ga/Al=3.12~4.14,显示出A2型花岗岩的地球化学特征。钾长花岗岩中锆石的εHf(t)值和Hf同位素两阶段模式年龄分别变化于+4.40~+12.14和549~985Ma,显示出正的、不均一的同位素组成,可能形成于壳-幔混合作用,其中幔源端元应当是伸展环境下上涌的地幔岩浆,而壳源端元则可能是扬子板块新元古代的新生地壳部分熔融形成的长英质岩浆。结合区域地质资料,认为该花岗岩可能形成于古特提斯洋壳对羌北-昌都板块北向俯冲引起的陆缘弧后拉张环境。  相似文献   

8.
LA-ICP-MS锆石U-Pb定年结果显示,桂北新寨花岗岩形成于中奥陶世(465±2Ma)。该花岗岩的地球化学特征表现为化学成分较均一,具有高硅(SiO_2=68.54%~74.57%)、富碱(K_2O+Na_2O=7.61%~8.31%)、更富钾(K_2O/Na_2O=1.77~2.35)、强过铝质(A/CNK=1.09~2.39)和富集大离子亲石元素而亏损高场强元素等特征,属于S型花岗岩。新寨花岗岩具有比较均一的Sr、Nd同位素组成(I_(Sr)=0.71137~0.71328,ε_(Nd)(t)=-7.89~-7.26)。锆石Hf同位素组成为:(~(176)Hf/~(177)Hf)_i=0.28232~0.28252,ε_(Hf)(t)=-6.18~+0.61,Hf同位素两阶段模式年龄TDM2变化于1.67~2.11Ga之间。元素及Nd-Sr-Hf同位素分析结果显示,新寨花岗岩可能源自古元古代地壳变质泥岩的部分熔融,在成岩过程中有少量幔源组分的参与。新寨S型花岗岩可能是广西运动第二幕在桂北地区的岩石学响应,为早古生代构造-岩浆群事件的建立提供了新证据。  相似文献   

9.
张博  郭锋  张晓兵 《岩石学报》2020,36(4):995-1014
东南沿海地区发育具有"等同位素组成"特征的晚中生代双峰式火成岩,其成因备受争论。本文选择了福建省平潭岛双峰式杂岩体中的花岗闪长岩、英云闪长岩与花岗岩开展了高精度锆石U-Pb定年、原位O-Hf同位素和黑云母矿物化学方面的研究,以探讨这些花岗质岩石的成因。分析结果显示,花岗闪长岩、英云闪长岩与花岗岩的锆石U-Pb年龄分别为116.8±1.0Ma、116.3±1.0Ma与117.4±1.0Ma,表明它们均侵位于早白垩世。这三类岩石也有较为相似的锆石O-Hf同位素组成。其中,锆石的δ18O分别变化为4.6%~5.3‰、4.8%~5.3‰及5.0%~5.6‰,与地幔的O同位素值基本一致。锆石的εHf(t)变化范围分别为+2.0^+7.1、+2.8^+6.5及+1.8^+5.6,相应的两阶段模式年龄tDM2分别为741~1046Ma、754~995Ma及815~1058Ma。锆石O-Hf同位素数据反映其熔融源区主要为相对较年轻的地壳物质,来自华夏地块古老基底的贡献较少。另外,黑云母矿物化学暗示这三类岩石具有Ⅰ型花岗岩的特征。但是,黑云母种属在不同岩性间存在差异,其中花岗闪长岩与英云闪长岩中的黑云母为镁质类型,花岗岩中的黑云母为铁质类型。从花岗闪长岩、英云闪长岩到花岗岩,黑云母的结晶温度和岩浆体系的氧逸度均逐渐降低,这与钙碱性岩浆分异演化的趋势基本一致。结合前人研究资料及区域地质演化历程,我们认为平潭岛杂岩体中的花岗质岩石形成于古太平洋俯冲背景,其熔融源区主要为新增生地壳物质。花岗质岩石内部岩性的差别主要是母岩浆经历不同程度分异演化的结果。我们的研究结果暗示壳幔岩浆混合在东南沿海早白垩世长英质岩石形成过程中所具有的作用可能较为有限。  相似文献   

10.
内蒙狼山宝音图地区前寒武纪地质体由古元古代宝音图群、片麻状花岗岩、混合岩和斜长角闪岩等组成。锆石LA-MC-ICP-Ms U-Pb测年获得了宝音图变质花岗岩的形成年龄为1644±11Ma~1710±20Ma。岩石学、地球化学研究表明片麻状钠长花岗岩具有高Si O_2(77.08%~79.96%)、高碱(K_2O+Na_2O)(4.46%~7.26%),低Ti O_2(0.088%~0.17%)、MgO(0.036%~0.37%)、Ca O(0.17%~1.19%)及中等Al_2O_3含量(12.12%~14.10%);Na_2OK_2O,A/CNK为0.88~1.091.1,属弱铝质;里特曼指数б=0.54~1.551.8,表明属于钙质系列;10000Ga/Al=3.43~12.46(均值为5.182.6)及较高的含铁指数[Fe O/(Fe O+MgO)=0.57~0.94],显示了低钾钙性A型花岗岩的特点。片麻状二长花岗岩具有高Si O_2(73.65%~77.63%),低Ti O_2(0.11%~0.27%)、MgO(0.25%~0.80%)、Al_2O_3(11.68%~12.72%)、Ca O(0.24%~0.99%)含量,基本与片麻状钠长花岗岩相近;同时具有高碱(K_2O+Na_2O)含量(6.84%~9.31%),低的Na_2O/K_2O比值(0.53~1.62),钾含量明显高于与片麻状钠长花岗岩;A/NCK为0.96~1.86,б=2.06~2.801.8~3.3为钙碱性系列,显示高钾钙碱性A型花岗岩的特点。两类片麻状花岗岩均具有稀土总量较高,轻稀土富集而重稀土亏损的特征,具有明显Eu的负异常;构造判别图解均指示为陆内非造山型A型花岗岩。全岩同位素分析表明具有弱富集-亏损的同位素组成,其中ε_(Nd)(t)为小的负值到小的正值(-4.91~+2.41),两阶段Nd模式年龄t_(DM2)为1.95~2.58Ga;锆石ε_(Hf)(t)均为正值(+1.5~+8.0),两阶段Hf模式年龄t_(DM2)(1.73~2.31Ga),Nd-Hf模式年龄均高于其形成年龄,揭示源自古元古代新生下部陆壳物质的部分熔融,并有少量幔源物质的加入。与华北北缘、欧美大陆的古元古代非造山作用形成的岩浆岩相似,宝音图变质花岗岩时代上与哥伦比亚超大陆的裂解事件(1.7~1.6Ga)具有一致性,可能是全球哥伦比亚超大陆裂解事件的构造岩浆响应。  相似文献   

11.
在扬子地块西缘出露有大量的新元古代岩浆岩,这些岩石对于重建罗迪尼亚超大陆有着重要的意义。本文对云南峨山岩体的花岗闪长岩和似斑状黑云母二长花岗岩开展了详细的岩石学、岩石地球化学和年代学研究,结果表明,似斑状黑云母二长花岗岩侵位于826.6±2.5 Ma,而花岗闪长岩有着较年轻的结晶年龄818.3±2.8 Ma,花岗闪长岩比似斑状黑云母二长花岗岩有着更低的SiO2含量,但是更高的Al2O3、MgO、Fe2O3、TiO2和P2O5含量。在稀土元素配分曲线和微量元素蛛网图上,两种岩性呈现出相似的特征,都是具有右倾的稀土元素配分样式,呈现出Eu负异常,相对于大离子亲石元素(LILEs)更亏损高场强元素(HFSEs)。似斑状黑云母二长花岗岩富集Nd同位素组分,而花岗闪长岩与之有着相似的Nd同位素值。地球化学数据显示可能的岩石学成因是变质火成岩源区在826 Ma时发生部分熔融形成了峨山似斑状黑云母二长花岗岩并且残留下来了一个麻粒岩化的源区;麻粒岩源区在818 Ma时再次发生部分熔融形成了具有A型属性的峨山花岗闪长岩。结合前人的数据和本文的研究,认为扬子西缘在新元古代时期是一个活动大陆边缘,而华南地块当时在罗迪尼亚的位置更可能是在边缘而不是中心。  相似文献   

12.
八宿吉利地区寒武纪变质花岗岩位于曲扎湖-提卡一带,主要由变质二长花岗岩和变质花岗闪长岩组成。这一新发现对于认识和恢复原特提斯构造历史演化具有重要意义。锆石CL图像显示变质花岗岩锆石为岩浆成因。锆石LA-ICP-MS测年得出片理化变质二长花岗岩年龄为503.7±4.7Ma、变质花岗闪长岩年龄为494.7±3.4Ma,表明该岩体形成时代属于寒武纪。通过岩石地球化学分析,变质二长花岗岩SiO2含量介于69.87%~79.89%之间;变质花岗闪长岩SiO2含量介于66.63%~70.15%之间。前者Al2O3含量变化于12.36%~14.82%,Na2O含量为2.54%~7.16%,K2O含量为0.15%~5.95%,K2O/Na2O=0.02~2.34;后者Al2O3含量变化于14.66%~15.41%,Na2O含量为3.60%~5.63%,K2O含量为0.77%~2.78%,K2O/Na2O=0.14~0.77,属于钙碱性-碱性过铝质花岗岩。在侵入岩构造环境Rb-(Y+Nb)判别图解、Rb-(Yb+Ta)判别图解中,样品均落入“火山弧花岗岩”区域中,表明其形成于大陆边缘火山弧环境。结合锆石测年结果及区域地质背景分析,认为吉利地区变质花岗岩形成于冈瓦纳大陆裂离卡穷微陆块阶段,同时表明原特提斯洋形成最早时限可追溯至寒武纪。  相似文献   

13.
李斌  陈井胜  刘淼  杨帆  李伟  吴振  陈敏华  武昌胜 《地质通报》2018,37(9):1671-1681
以赤峰地区铭山复式岩体、尖山子岩体为研究对象,通过锆石U-Pb年龄、地球化学研究,确定了其形成时代,探讨了岩石成因和岩浆源区性质及其形成的构造背景。LA-ICP-MS锆石~(206)Pb/~(238)U测年结果表明,铭山复式岩体中灰白色斑状黑云二长花岗岩、尖山子岩体中浅肉红色细粒正长花岗岩分别形成于284.4±7.9Ma、294.7±8.5Ma,为早二叠世。根据地质体间接触关系可知,铭山复式岩体中的二长花岗岩岩体和尖山子岩体均为复式岩体,有待进一步解体。斑状黑云二长花岗岩SiO_2含量较高,K_2O+Na_2O含量较高,A/CNK1,属于高钾钙碱性I型花岗岩。细粒正长花岗岩Al_2O_3含量为14.32%~15.14%,Na_2O/K_2O=0.71~0.99,A/CNK=1.17~1.20,在标准矿物中出现刚玉分子。二者微量元素特征相似,富集大离子亲石元素,亏损高场强元素Nb、Ta,具Sr、P、Ti的负异常,表现出岛弧岩浆岩类特征。结合岩石地球化学、区域地质特征,认为赤峰地区早二叠世岩体形成于岛弧/活动大陆边缘构造背景,其形成与古亚洲洋向南俯冲有关。  相似文献   

14.
沙麦钨矿床位于内蒙古东乌旗地区,是该区目前已探明的中型岩浆热液型钨矿床。矿体主要赋存在黑云母二长花岗岩和黑云母二长花岗斑岩中,对这两种花岗质岩石的岩相学、岩石地球化学和LA-ICP-MS锆石U-Pb年代学进行了研究。结果表明,黑云母二长花岗岩锆石U-Pb年龄为135.6±1.6 Ma和136.3±1.8 Ma,黑云母二长花岗斑岩锆石U-Pb年龄为138.6±1.1 Ma,二者侵位时间均为早白垩世。两种花岗质岩体具有富SiO2(73.73%~78.23%)、高钾钠(Na2O+K2O)(7.56%~8.89%)、贫MgO(0.09%~0.20%)、贫CaO(0.51%~0.89%)、贫TiO2(0.03%~0.12%)的特征,属于过铝质-高钾钙碱性系列;微量元素富集Rb、K、Th和U,相对亏损Sr、Ba、Nb、P和Ti元素,具有强烈的Eu负异常,具有较高的FeOT含量,较高的FeOT/MgO和FeOT/(FeOT+M...  相似文献   

15.
祁漫塔格东段拉陵高里河地区晚三叠世—早侏罗世花岗岩组合为高SiO_2(72.18%~76.55%)、高K_2O(4.08%~5.32%)的碱性花岗岩组合,具有明显的负Eu异常(δEu平均值为0.28)。岩石组合为二长花岗岩+正长花岗岩,采用LA-ICP-MS技术测得二长花岗岩和正长花岗岩的年龄分别为205.1±1.0Ma和199.5±1.2Ma。该套花岗岩组合与拉陵高里河地区的矽卡岩型多金属矿关系密切,初步确定祁漫塔格地区晚三叠世—早侏罗世花岗岩组合也是一期重要的成矿岩浆建造。  相似文献   

16.
北秦岭蟒岭岩体的锆石U-Pb年龄、地球化学及其演化   总被引:2,自引:1,他引:1  
蟒岭岩体位于北秦岭构造带北部,岩石类型主要为似斑状黑云母二长花岗岩、中粗粒黑云母二长花岗岩、中细粒二长花岗岩、含辉石黑云角闪闪长岩和黑云母钾长花岗岩。依据LA-ICPMS锆石U-Pb定年结果,结合前人测试的年龄,将蟒岭岩体的岩浆演化划分为晚侏罗世早期、晚侏罗世晚期—早白垩世早期和早白垩世中期3期。第一期为含辉石黑云角闪闪长岩,其LA-ICPMS锆石U-Pb年龄为(157±1) Ma,该期岩石SiO2质量分数较低,富碱,属于准铝质,钾玄岩-高钾钙碱性系列;第二期二长花岗岩,侵位年龄为(148±1) Ma~(144±1) Ma,具有高硅、富碱的特征,属于准铝质-弱过铝质,钾玄岩-高钾钙碱性I-A过渡型花岗岩;第三期黑云母钾长花岗岩,侵位年龄为(124±2) Ma,具高硅、富碱、低镁、铝饱和指数偏高的特征,属过铝质,高钾钙碱性I-A过渡型花岗岩。组成蟒岭岩体的花岗岩从早到晚,SiO2质量分数逐渐升高,而Al2O3、TiO2、MgO、CaO、P2O5、TFe2O3质量分数逐渐降低;稀土元素总量具有由高到低的变化趋势,第一期和第二期岩石的稀土元素配分曲线为轻稀土元素相对富集的右倾型,而第三期的稀土元素配分曲线呈两边高中间低的不对称弧形,整体上负铕异常不明显或呈微弱正铕异常;微量元素上,这3期岩石均富集K、Rb、Ba、Sr等大离子亲石元素,而相对亏损P、Nb、Ta、Ti等高场强元素。与区域上同时代成矿花岗岩体对比,两者均具有高硅、富碱的特征,稀土元素球粒陨石标准化曲线呈轻稀土元素富集的右倾斜型,但蟒岭岩体中二长花岗岩没有明显的Eu异常,且Ba、P、Ti亏损及Ta、Nb富集没有含矿花岗岩明显。  相似文献   

17.
Paleoproterozoic granitoids are an important constituent of the Jiao–Liao–Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In this paper, we review the field occurrence, petrography, geochronology, and geochemistry of Paleoproterozoic granitoids on Liaodong Peninsula, northeast China. The Paleoproterozoic granitoids can be divided into pre-tectonic(~2.15 Ga; peak age=2.18 Ga) and post-tectonic(~1.85 Ga) granitoids. The pre-tectonic granitoids are magnetite and hornblende–biotite monzogranites and granodiorites. Pre-tectonic monzogranites are widespread in the JLJB and have A_2-type affinities. In contrast, pretectonic granodiorites are only present in the Simenzi area and have adakitic affinities. The post-tectonic granitoids consist of porphyritic monzogranite, syenite, diorite, granodiorite, quartz monzonite, monzogranite, and granitic pegmatite, which are adakitic rocks and I-, S-, and A_2-type granitoids. The assemblage of pre-tectonic A_2-type granitoids and adakitic rocks indicates the initial tectonic setting of the JLJB was a continental back-arc basin. The assemblage of post-tectonic adakitic rocks and I-, S-, and A_2-type granitoids indicates a post-collisional setting. The 2.20–2.15 Ga A_2-type granitoids and adakitic rocks were associated with the initial stage of back-arc extension, and the peak of back-arc extension is inferred from the subsequent(2.15–2.10 Ga) mafic intrusive activity. The ~1.90 Ga adakitic rocks mark the beginning of the postcollisional stage, which was followed by the intrusion of low-temperature S-and I-type granitoids. High-to low-pressure granitoids(S-type) were generated during the peak of post-collisional lithospheric delamination and asthenospheric upwelling. The emplacement of later granitic pegmatites occurred during the waning of the orogeny.  相似文献   

18.
The zircon SHRIMP dating of the Zhangtiantang granite gave an age of 159±7 Ma., which shows that the granite was produced at the early Late Jurassic. The Ar-Ar plateau ages of biotite and K-feldspar from the Zhangtiantang pluton are 153.2±1.1 Ma and 135.8±1.2 Ma, respectively. The Ar-Ar anti-isochrone ages of biotite and K-feldspar are 152.5±1.7Ma and 135.4±2.7Ma, respectively. The ages represent the isotopic closure ages of minerals in the pluton. The Zhangtiantang granites are regarded as peraluminous crust-derived type granites to possess the typical geochemical characteristics of calc-alkaline rocks on continental margin, with enriched Si, K, Al (average value of A/CNK as 1.18), HREE, Rb, U, and Th, heavily depleted V, Cr, Co, Ni, Ti, Nb-Ta, Zr, Sr, P, and Ba, strongly negative Eu and common corundum normative (average value of C as 1.84). The εNd(t) values of the Zhangtiantang granite are −5.84 to −7.79, and t 2DM values are 1.69 to 1.83 Ga, which indicates partial melting of continental-crust metamorphic sedimentary rocks during the Middle Proterozoic. The cooling history of the Zhangtiantang granitic pluton indicates that the cooling velocity of pluton was faster (about 67°C/Ma) from zircon (158 Ma) to biotite (152 Ma), and was slower (about12°C/Ma) from biotite (152.5 Ma) to K-feldspar (135.8 Ma). It can be deduced that the temporal gap (about 10 Ma) between the granite formmation and W-Sn mineralization in South China may be related to ordinary magma-hydrothermal processes by the variational cooling curve of the pluton. The Zhangtiantang pluton was formed in a compressive setting, with differentiation evolution and mineralization occurring in a relative relaxation setting.  相似文献   

19.
The Chinese Altai in northwestern Xinjiang has numerous outcrops of granitoids which provide critical information on accretionary orogenic processes and crustal growth of the Central Asian Orogenic Belt.Zircon U-Pb ages, Hf-isotopic compositions and whole-rock geochemistry of monzogranite and granodiorites in the Qinghe County are employed to elucidate Paleozoic tectonics of the Chinese Altai. Granodiorites have crystallization ages of 424.6 ± 3.1 Ma(MSWD = 0.23) and 404.0 ± 3.4 Ma(MSWD = 0.18);monzogranite was emplaced in the early Permian with a crystallization age of 293.7 ± 4.6 Ma(MSWD = 1.06). Both granodiorites and monzogranite are I-type granites with A/CNK ratios of 0.92 -0.97 and 1.03 -1.06, respectively. They also show similar geochemical features of high HREE and Y contents, low Sr contents and Sr/Y ratios, as well as enrichment of Cs, Rb, Th and U, and depletion of Nb, Ta, P and Ti.These geochemical features indicate that the monzogranite and granodiorites were formed in an arc setting related to subduction. The gneissic monzogranites display high SiO_2 and K_2 O contents, and belong to the high-K calc-alkaline series. In the chondrite normalized REE distribution pattern, the monzogranite samples exhibit enrichment of LREE with strong negative Eu anomalies(σE u =0.44 -0.53), zircon εHf(t) values from +7.24 to +12.63 and two-stage Hf model ages of 463 -740 Ma. This suggests that the monzogranite was generated from the mixing of pelitic and mantle material. The granodiorite samples are calc-alkaline granites with lower contents of Si O_2 and Na_2 O + K_2 O, higher contents of TiO_2, Fe_2O_3~t, MgO and CaO compared to the monzogranite samples. They also show enrichment of LREE and moderate negative Eu anomalies(σE u= 0.54 =0.81), as well as slightly higher differentiation of LREE than that of HREE. The425 Ma granodiorite has zircon εHf(t) values from -0.51 to +1.98 and two-stage Hf model ages of 1133 -1240 Ma, whereas the 404 Ma granodiorite displays those of +2.52 to +7.50 and 816 -1071 Ma.Geochemistry and zircon Hf isotopic compositions indicate that granodiorites were formed by partial melting of juvenile lower crust. Together with regional geology and previous data, the geochemical and geochronological data of the monzogranite and granodiorites from this study suggest long-lived subduction and accretion along the Altai Orogen during ca. 425 -294 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号