首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
城门山及武山铜矿床的硫同位素研究   总被引:1,自引:0,他引:1  
地质概况江西城门山矿床和武山矿床是长江中下游铁铜成矿带大冶-九江成矿亚带东南部位的两个与斑岩有成因关系的铜矿床。在地质构造上,前者处于九江-瑞昌东西向拗陷带中的长山-城门湖背斜倾伏端的北翼,后者处在横立山-黄桥向斜东端的北翼。两矿区的地层分布相似,主要是志留系至三叠系地层。其中,泥盆系上统五通组砂岩及石炭系中统黄龙组灰岩与矿床关系密切。  相似文献   

2.
绪言本文工作范围为以河南省嵩山为中心的800平方公里面积(图2,5),位于秦岭巨型纬向构造带上,东西向登封大背斜的核部及北翼。区内出露了由三个角度不整合相隔的三套前寒武纪岩系(图1),为我国前寒武系典型发育地区之一。  相似文献   

3.
一、分布及与上下岩层的接触关系南沱组冰碛岩在黄陵背斜地区分布广泛,于震旦纪地层出露地区多可见及,但其发育不甚稳定。以其沉积发育状况大致可以背斜西翼的黄家河至背斜东翼的牛坪的北西方向连线划分为二区:北线以南地区冰碛岩的沉积厚度稳定于60-110米间;以北地区突减到10米以下,以至尖灭。冰碛岩发育最厚的地方是在庙河一带,厚达110米。向东至秋千坪厚69.4米,到莲沱厚67.3米。向北,背斜西翼的黄家河一带厚度变化急剧,由60米减到3米。再北至两河口厚1-8米,水月寺厚0-1.3米,到北端的白果园厚0-3.4米,殷家坪附近消失不见。  相似文献   

4.
我国东部新生代玄武岩岩石化学的一些探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
新生代是地球上玄武质岩浆的主要活动期。在我国东部,新生代玄武岩分布也极广泛,由北往南自大兴安岭、松辽盆地经华北、苏闽浙至台湾、海南岛以及近海大陆架均有不同程度的出露。时间上从老第三纪至史期均有玄武岩喷发活动。  相似文献   

5.
库布齐沙漠南缘抛物线形沙丘表面粒度特征   总被引:5,自引:0,他引:5  
对库布齐沙漠南缘抛物线形沙丘特征断面上下层(0~5cm、5~10cm)沉积物采样分析结果表明,沙丘粒径与分选参数及其分布随沙丘形态、发育程度和植被生长状况发生变化。抛物线形沙丘丘体迎风坡下凹背风坡上凸,丘顶始终处于侵蚀亚环境。在顺风向断面,平均粒径从迎风坡脚到丘顶变粗,从丘顶到背风坡脚又变细,且这种变化在高大沙丘上更为明显;分选性在迎风坡为中等和较好,丘顶较差,顺风向到背风坡脚逐渐由中等变为较好;粒径频率曲线在丘顶双峰正偏,除迎风坡脚单峰正偏外,其余部位均单峰近对称。在垂直于风向的两翼断面,平均粒径在成熟沙丘由翼顶向两侧坡脚趋于变细,而在欠成熟沙丘无明显的变化趋势。翼间平地沉积物受植被等影响,平均粒径偏细但分选性差,偏度为正偏和极正偏,峰度为尖锐和非常尖锐。受不同时期风况的影响,成熟抛物线形沙丘上下层粒度参数在沙丘断面的分布较欠成熟沙丘一致。  相似文献   

6.
对长江三角洲北翼南通地区ZKA4钻孔岩心进行了磁性地层学研究,结果表明,302.7 m的岩心记录了布容正向极性时(Brunhes)、松山负向极性时(Matruyama)和部分高斯正极性时(Gauss)。在系统古地磁样品采集、处理和测试的基础上,应用磁性地层、AMS 14C加速器测年等方法,结合岩性特征,对ZKA4钻孔剖面进行了详细地层划分,分别确定了下更新统、中更新统、上更新统和全新统的埋深及沉积厚度,其中Q/N界线位于291.72 m处,Qp1/Qp2、Qp2/Qp3、Qp3/Qh界线分别定位于189.39 m、132.44 m和26.14 m处。本项研究结果为该区域第四纪地层划分对比、古地理环境演化及岸线变迁等相关研究提供了可靠的地层年代框架。  相似文献   

7.
中国东北饶河中生代褶皱带内的海相中生代地层   总被引:3,自引:0,他引:3       下载免费PDF全文
王秀璋 《地质科学》1959,2(2):50-51
海相中生代地层分布范圍較窄,西從黑龍江省宝清县大和鎮起,东越烏苏里江而至苏联國境,南抵虎林之北,北达烏苏里江注入黑龙江处。其分布区东西寬达100公里(連續出露部分宽只85公里),南北長約250公里左右(北部100公里范圍內被第四紀地层掩盖)。  相似文献   

8.
淮南、霍丘早寒武世沉积若干问题的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
杨志坚 《地质科学》1960,3(4):182-188
前言淮南、霍丘-固始及豫西,是中朝地块上寒武系最发育的地区之一。豫西及本区全属淮阳地盾北緣,与华南寒武紀沉积仅有淮阳古陆之隔,所以在解决华北与华南寒武系对此問題上,本区及豫西、秦岭北坡应为关键地区。淮南、霍丘的寒武系,解放前,先后有謝家荣及孙殿卿作过描述,但未作詳細分层。解放后,叶連俊等在調查淮南凤台磷矿地貭时,曾对寒武系作过研究,提出了重要見解。  相似文献   

9.
孙玉科 《地质科学》1958,1(2):28-29
一引洮渠道工程,被称为“共产主义的工程,英雄人民的創举”,这是我国人民征服自然的新开端,也必然为工程地質工作創立了新的一頁。渠道的总干渠由甘肃省岷县古城經月亮山到庆阳董志源,全長1,100公里。西部是祁連山,北有黃土高原,南面是西秦嶺的北側,东穿六盤山。  相似文献   

10.
王则江 《地质科学》1980,15(1):76-82
引言 河北易县青白口群底部燧石角砾岩(下面简称“角砾岩”)系指震旦亚界蓟县群铁岭组之上、青白口群下马岭组下部之角砾岩。它在太行山北段、中段都有分布,厚度由二、三米至五、六十米不等,在易县南约十四公里的向阳、北考一带发育很好,厚达六十米,顶底接触关系清楚,是研究“角砾岩”成因的良好地段。  相似文献   

11.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

12.
Abstract: Dashuigou, a unique tellurium‐dominated deposit over the world, is located in the western margin of the Yangtze cra‐ton in southwestern China. It is characterized by high‐grade tellurium accompanied by bismuth, gold, silver, and sulfur, and occurs in the area of less than one km2. The mineralization is divided into three stages, i.e. (1) tellurium‐bearing pyrrhotite–pyrite stage, (2) tetradymite stage, and (3) auriferous quartz veins stage. Tellurium mineralization coexisting with bismuth, silver, selenium, and gold predominantly develops in the stage 2, while the stage 1 is enriched only in sulfur and iron, and the stage 3 is very weakly mineralized with gold. The δ34S values of sulfides in the ore of the deposit vary in a narrow range of –3.1 ‐ +2.8 per mil with –3.1 ‐ +2.8 per mil for the stage 1 and –0.5 ‐ +2.1 for the stage 2, showing the isotopic characteristics of mantle derived sulfur. The δ13C values of vein dolomites vary from –5.3 to –7.2 per mil, with –5.3 ‐ –6.6 per mil for the stage 1 and –5.3 ‐ –7.2 per mil for the stage 2, which are significantly different from those of surrounding Triassic marble with δ13C values of –0.3 ‐ +2.8 per mil, and show characteristics of mantle derived carbon. The δ18O values of vein dolomites range from +10.2 to +13.1 per mil, which are higher than those of carbonatite, but lower than those of the marble. Their corresponding δ18Owater values are +0.6 ‐ +3.9 per mil, with +2.7 ‐ +3.8 per mil for the stage 1 and +0.6 ‐ +3.9 per mil for the stage 2. The data implies that these vein carbonates were formed by the mixing fluids of magmatic or mantle source with meteoric or formation water. The δ18O values of ore‐forming fluids responsible for the formation of vein quartz are estimated to be +3.2 to +6.8, the δD values of inclusion fluids of the quartz are measured to be –54 to –82 per mil. All those stable isotopic data suggest the involvement of the fluids from mantle and/or mantle‐derived magmas through fault system in the forming process of the Dashuigou tellurium deposit.  相似文献   

13.
《International Geology Review》2012,54(12):1113-1138
The Natalka lode gold deposit, also known as the Matrosov mine, is located in the Magadan region of northeastern Russia at 61° 39′ N, 147° 50′ E. The deposit was discovered in 1943 and production started in 1945. The mine has produced more than 75 metric tons of gold, with an average grade 4 g/metric ton (mt), and has reserves of about 450 mt.

The Natalka deposit occurs along the southwestern flank of the Yana-Kolyma metallogenic belt and is confined to the major, NW-trending Tenka fault. The deposit is hosted by Upper Permian carbonaceous sediments, subjected to greenschist metamorphism. The ore zones occur along a Z-shaped, strike-slip fault zone that extends for about 12 to 13 km. In plan view, the ore zones are about 5 km long and 100 to 200 m wide in the northwest portion, 350 to 400 m wide in the central portion, and 600 m wide in the southeast portion of the deposit.

The main ore minerals are arsenopyrite and pyrite, which comprise about 95% of the sulfides, along with subordinate pyrrhotite, Co-Ni sulfarsenides, sphalerite, chalcopyrite, galena, native gold, ilmenite, and rutile. Scheelite, tetrahedrite, bournonite, boulangerite, and stibnite occur locally. The major gangue mineral is quartz, with subordinate carbonates, feldspars, chlorite, sericite, kaolinite, montmorillonite, and barite. The total sulfide content of the ore zones ranges from 1 to 3%, and in places up to 5%. Native gold occurs as large individual grains ranging from 0.1 to 2.0 mm in diameter, or as fine disseminations in arsenopyrite. The average gold fineness is 750 to 790.

Fluid inclusion studies reveal homogenization temperatures of 150° to 360° C, with mainly liquid and as much as 5% vapor. Two temperature peaks of 280° to 320° C and 180° to 240° C occur in many samples. The δ34S composition of sulfides in orebodies ranges from ?6.3 to ?2.4 per mil and approximates that of sedimentary rock-hosted pyrite. The δ34S values of the ore solutions are interpreted as having been close to that of the sulfide minerals. The δ18O composition of ore quartz ranges from 13.9 to 14.1 per mil. The calculated δ18O composition for the ore fluid ranges from 7.1 to 7.3 per mil at 300° C. The δ18O values of oxygen indicate a quite homogeneous fluid of metamorphic origin.

The sulfur, arsenic, and gold in the ore deposit were mobilized during metamorphism that included transformation of pyrite to pyrrhotite. The PT conditions for this reaction are estimated at about 400°C and 2.5 kbar, approximately at the biotite isograd. Associated decarbonatization and dehydration reactions produced much of the ore fluid. The interaction of ore-fluid sulfur with Fe-bearing silicate and oxide minerals probably caused deposition of sulfide minerals and gold.  相似文献   

14.
王萍  周琦  杜远生  余文超  徐源  齐靓  袁良军 《地球科学》2016,41(12):2031-2040
黔东松桃地区是我国重要的锰矿富集区,其中大塘坡组中黄铁矿δ34S存在比较大的差异.通过CF-IRSM法对松桃李家湾、道坨、西溪堡矿区菱锰矿样品中黄铁矿硫同位素组成开展研究,结果显示出两个明显的特征:(1) 样品中黄铁矿普遍具有极高的δ34S值,为47.69‰~66.76‰;(2) 在同一成锰盆地中,水深相对较浅的李家湾矿区黄铁矿δ34S值(47.69‰~59.15‰)明显低于水深相对较深的道坨矿区的δ34S值(53.85‰~62.86‰),且中心相δ34S的值(53.85‰~66.76‰)明显高于过渡相δ34S的值(47.69‰~59.15‰),黄铁矿硫同位素组成表现出明显的深度梯度效应.大塘坡组含锰层位黄铁矿异常高的δ34S值及其明显的深度梯度特征表明,在新元古代Sturtian冰期刚刚结束的间冰期初期,海水硫酸盐浓度极低,海洋呈现显著的分层现象,这一时期深部海洋可能并没有完全氧化.   相似文献   

15.
The Dashuigou tellurium deposit, located on the western margin of the Yangtze platform, is unique. The deposit is hosted by Triassic metabasalt 50 to 80 meters thick. The orebodies occur as a group of NNE-striking parallel veins. Mineralization developed in three stages: Stage I— pyrrhotite-pyrite, Stage II—tetradymite, and Stage III—chalcopyrite-pyrite. Stage II is the principal tellurium mineralization stage and the tellurium-bearing minerals are mainly tetradymite, tsumoite, tellurbismuth, joseite, calaverite, stuetzite, and native tellurium. The general ore grade of the tellurium in Stage II ranges from 0.2 to 5 wt%, and it reaches 15 to 25 wt% for the massive ores. The dominant gangue minerals are calcite and dolomite, with minor biotite, muscovite, albite, quartz, and chlorite.

Fluid-inclusion studies of calcite, dolomite, and quartz from Stages I, II, and III yield homogenization temperatures of 356° to 260° C (mean = 320° C), 295° to 198° C (mean = 240°), and 235° to 152° C (mean = 170° C), respectively. Salinities of primary fluid inclusions in all three stages are 1.5 to 5.8 wt% NaCl equivalent, 9 to 15.2 wt% NaCl equivalent, and 2.8 to 3.0 wt% NaCl equivalent, respectively.

Isotopic studies show that δ34 values of sulfides range from -2.2 to +2.8 per mil. δ13C values of calcites and dolomites in the ore veins range from -5.3 to -7.42 per mil, and δ18O values range from +10.9 to +13.1 per mil, which are quite different from the δ13C values of+1.0 to +2.8 per mil and δ18O values of +16.8 to +28.5 per mil for the calcites from the Triassic carbonates in the deposit. The δD and δ18O values of muscovite and quartz were measured to be -61 to -54 per mil and +9.9 to +13.0 per mil, respectively. Values of δ18Owater computed from fluid-inclusion trapping temperatures are +3.9 and +7 per mil.

A date of 93 Ma was obtained through measurement of muscovite from the No. 12 ore vein. Sulfur-, oxygen-, carbon-, and hydrogenisotope data indicate that the ore-forming substances of the Dashuigou tellurium deposit were derived from deep-seated sources, and the mineralizations probably are associated with Late Mesozoic alkaline or alkaline granitic magmatism. The estimated sulfur fugacities (fs2) are 10?16.7 for Stage I and 10?14 to 1015.5 for Stage II, whereas the tellurium fugacities (fTe2) are 10?15 to 10?14 and 10?11.2 to 10?10.5, respectively.  相似文献   

16.
The Deer Lake Complex, located in north-central Minnesota, consists of a series of layered peridotite-pyroxenite-gabbro sills. Sulfide minerals occur as fine disseminations throughout pyroxenite and gabbro units, and occur more sporadically in peridotite and basal chilled margin units. Sulfide volume percentage rarely exceeds 0.5. A distinct zonation in sulfide mineralogy and sulfur isotopic composition characterizes the sills. Cobaltian pentlandite is the dominant sulfide mineral in peridotite (pd) units, with Ni-enrichment most likely linked to the serpentinization process. δ34Spd values are variable, ranging from ?3.5 to +2.8‰. Sulfide assemblages in pyroxenite (px) and lower gabbro units consist of chalcopyrite, pyrrhotite, and minor pentlandite. δ34Spx values range from ?1 to +1 ‰. Pyrite is the principal sulfide mineral in upper gabbro (μg) units. Its origin may be related to increased f02 conditions of the remaining melt and to reaction between a S-bearing volatile phase and mafic silicates. δ34Sug values range from 1 to 3.5 ‰. Sulfur isotopic values of chilled margin (2–9 ‰) and peridotite units, together with the erratic spatial distribution of sulfide minerals in these zones, suggests that the parent magma was not initially saturated with sulfur, and that local sulfide concentrations are the result of incorporation of sulfur derived from metasedimentary country rocks. Sulfide saturation was more uniformly reached during pyroxenite formation, with contained sulfur being of magmatic origin. Enrichment in 34S of pyrite from upper gabbro may be explained by buildup of isotopically heavy sulfur following a Rayleigh process, coupled with possible involvement of a SO2-rich fluid phase during hydrothermal alteration.  相似文献   

17.
The Ana Yatak massive sulfide deposit is located in the Ergani-Maden District of southeastern Turkey and has been a major source of copper for more than 4,000 years. The mineralization is hosted by strongly chloritized serpentinite, gabbro, diabase, and mud-stone. The ore body is ~600 × 250 m in maximum dimension, mainly consists of pyrite and chalcopyrite, and locally contains abundant magnetite, pyrrhotite, and chromite. The gangue contains predominantly chlorite, rarely quartz. This paper is mainly concerned with an investigation of the sulfur-isotope systematics of the Ana Yatak deposit.

Pyrite and chalcopyrite from the ore and pyrite from the host rocks were sampled and analyzed to determine their δ34S composition. δ34S values were found to vary within the range from +4.5 to + 9.3‰ for pyrites (mean δ34S = + 6.5 ± 1.8) and from +4.5 to +10.0 for chalcopyrites (mean δ34S = +6.7 ± 1.9) of the ore, and from +5.8 to +8.8 for pyrites (mean δ34S = + 7.3 ± 1.3) of the host rock. The δ34S compositions of all samples were found to vary from +4.5 to +10.0‰. For the chalcopyrite-pyrite pairs, there is a clear relationship of approximately equal δ34S values at each sampling site. Frequency distribution of the δ34S values is not unimodal and exhibits two peaks. The range of sulfur-isotope systematics implies that the Ana Yatak mineralization was influenced to a greater extent by seawater than by hydrothermal fluids.  相似文献   

18.
The Navia gold belt is located in the West Asturian-Leonese Zone of the Iberian Variscan Orogen. The host rocks of the mineralization are quartzites, sandstones and black shales of Cambro-Ordovician age. The gold belt extends along 35 km and has five major veins: Penedela, Encarnita, Fornaza, Carmina and S. Jose. The ores belong to at least four associations having contrasting mineralogies and textures. The δ34S values for individual mineral phases reflect the polyphase metallogenic history. The older association (Stage 1) is Fe-Mn-rich and is made up of spessartine, grunerite-dannemorite and quartz, with magnetite, pyrrhotite and chalcopyrite as metallic phases. The mineralization of Stage 1 is followed by the As-rich Stage 2 with quartz, arsenopyrite and pyrite. The δ34S values for pyrite range from 14.9 to 19.9 per mil (n = 16), and for arsenopyrite from 13.2 to 17.3 per mil (n = 7). The observed isotopic homogeneity likely implies isotopic equilibrium at the scale of the gold vein. Stage 3 contains a coarse-grained base metal sulphide-rich association. The δ4S values for sphalerite range from 16.4 to 20.6 per mil (n= 16), and for galena from 17.0 to 18.7 per mil (n = 11). δ34Ssp > δ34Sgl suggests that the sulphur isotopic fractionation of the ore-forming system had reached equilibrium. The youngest crosscutting mineral association (Stage 4) consists of Pb-Sb sulphosalts, bornite, electrum and quartz. The δ34S values for sulphosalts range from 9.7 to 15.8 per mil, showing the lightest results of the Navia sulphides.The relatively tight clustering of δ34S values of the Au-related sulphides, and the results of fluid inclusions and paragenetic studies, can be interpreted to indicate that the hydrothermal fluids of the last three stages were dominated by H2S. In the H2S predominant field, sulphide minerals precipitating from solutions would exhibit δ34S values similar to the δ34SΣS value of the ore fluid. The heavy δ34SΣS of the Navia fluids is consistent with leaching of sulphur from the host rocks. The main sulphur source could be diagenetic pyrite from the siliciclastic rocks of the Cabos and Luarca Formations, which exhibit δ34S values from 8.3 to 21.2 per mil. An additional sulphur-source in Stage 3 would be the leaching of disseminated sphalerite and galena present in Cambrian carbonates.  相似文献   

19.
近年来,在相山铀矿田的西部牛头山地区深部发现了铅锌矿化体,其成因机制不明.为探讨牛头山铅锌矿化体物质来源,开展了硫化物原位硫同位素分析研究.根据硫化物矿物之间的充填和包裹关系判断,铅锌矿化体金属硫化物形成的先后顺序是:黄铁矿形成最早,方铅矿和闪锌矿次之,细脉状黄铜矿形成最晚.利用LA-MC-ICP-MS技术对矿化体中几种金属硫化物分别进行了系统的原位硫同位素分析.结果显示:黄铁矿、闪锌矿、方铅矿、细脉状黄铜矿的δ34S值介于-4.8‰~+5.4‰之间,各硫化物矿物之间硫同位素未达到完全平衡分馏,利用黄铁矿δ34S值得到的矿化流体δ34SΣS值(总硫同位素组成)近似为+3.7‰,与共生矿物对(闪锌矿-方铅矿)图解法得到的闪锌矿和方铅矿沉淀时矿化流体的δ34SΣS值(+3.2‰)相近,表明形成牛头山铅锌矿化体的矿化流体δ34SΣS值大约为+3.7‰,为岩浆硫.结合前人的岩浆岩年龄数据,我们判断该铅锌矿化体金属硫化物的硫可能主要来自次火山岩相花岗斑岩岩浆热液.同一薄片中闪锌矿δ34S值高于共生的方铅矿,表明两者硫同位素基本平衡,利用共生矿物对(闪锌矿-方铅矿)硫同位素温度计计算得出平衡温度为197~476℃,与前人通过脉石矿物流体包裹体得到的铅锌矿化流体温度基本一致.相山火山盆地与相邻的北武夷黄岗山、梨子坑等产铅锌矿的火山盆地具有相似的成矿条件及成矿物质来源,使相山火山盆地具有良好的铅锌多金属找矿前景.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号