首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Natural hazards in Central Java Province,Indonesia: an overview   总被引:2,自引:0,他引:2  
Central Java Province, Indonesia, suffers from natural hazard processes such as land subsidence, coastal inundation, flood, volcanic eruption, earthquake, tsunami, and landslide. The occurrence of each kind of natural hazard is varied according to the intensity of geo-processes. It is necessary to learn from the historical record of coastal inundation, flood, volcanic eruption, earthquake, tsunami, and landslide hazards in Central Java Province to address issues of comprehensive hazard mitigation and management action. Through the understanding about the nature and spatial distribution of natural hazards, treatments can be done to reduce the risks. This paper presents the natural hazard phenomena in Central Java Province and provides critical information for hazard mitigation and reduction.  相似文献   

2.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   

3.
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection.  相似文献   

4.
Dam-break floods have been of increasing concern to safety engineers and decision makers. The presence of complex terrain in inundation areas multiplies the simulation difficulty of flood routing. In previous studies, representing the flood routing parameters empirically does not reflect the characteristics of flood routing, which strongly influences the accurate assessment of the dam-break consequences. The basis for carrying out dangerous reservoir reinforcement is just engineering safety, without considering the actual situation of downstream areas. In this study, a comprehensive risk analysis of the dam-break flood was implemented based on the numerical simulation of flood routing. First, coupled with the volume of fluid method, a three-dimensional k? turbulence mathematical model was developed for flood routing in complex inundation areas. Then, based on the flow parameters obtained through computational fluid dynamics modeling, the attribute measure methodology was used for the evaluation of consequences combined with the calculation of the dam-break consequences (loss of life, economic loss, social and environmental influence). Furthermore, a methodology containing the combined weight method and the technique for order performance by similarity to ideal solution method was proposed for risk ranking of dangerous reservoirs due to its logical consideration of scalar values that simultaneously account for both the best and worst alternatives. Finally, a sensitivity analysis was performed to provide information about the stability of risk ranking. The aforementioned model and methodology are applied to a case involving five reservoirs in the Haihe River Basin in China for Part II of this study.  相似文献   

5.
基于力学过程的蓄滞洪区洪水风险评估模型及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
果鹏  夏军强  陈倩  李娜 《水科学进展》2017,28(6):858-867
为定量评估分蓄洪工程启用过程中蓄滞洪区的洪水风险等级,创建了基于力学过程的蓄滞洪区洪水风险评估模型。该模型采用二维水动力学模块计算蓄滞洪区的洪水演进过程,利用洪水中人体跌倒失稳公式及洪水中房屋、农作物损失的计算关系式,评估各类受淹对象的洪水风险等级。然后将二维水动力学模块计算的洪水要素与两个物理模型试验值进行对比,表明二维水动力学模块的计算精度良好。最后计算了荆江分洪工程启用时分洪区内洪水的演进过程,并评估洪灾中群众的危险等级和财产损失。计算结果表明:洪水演进至140 h时,蓄滞洪区群众、房屋、水稻和棉花的平均损失率分别为85%、59%、63%和72%。模型中提出的采用基于受淹对象失稳机制的洪水风险分析方法,比以往经验水深法划分风险等级的适用性更好,不仅能为洪水风险管理及蓄滞洪区启用标准制定提供参考,也能推广应用于溃坝或堰塞湖溃决等极端洪水风险评估。  相似文献   

6.
钱名开  郑伟  彭顺风  李凤生 《水文》2013,33(2):19-24
提出了综合利用被动微波卫星、中等空间分辨率光学卫星、高空间分辨率光学卫星和雷达卫星等遥感数据,地理数据,以及水文和气象等多源空间数据的洪涝灾害监测评估方法。并以2007年淮河流域洪涝灾害监测为例,快速获取了全流域洪涝灾害的时空变化特征信息,以及淮河干流区域的最大淹没面积及淹没历时数据,实现了重点区域灾情的精细监测和量化评估。结果表明,该方法充分利用多源空间数据,保证下垫面洪涝灾情信息的及时获取,克服了传统调查统计方法的不足,在2007年淮河流域防洪减灾服务中发挥了重要作用。  相似文献   

7.
Midstream of the Keelung River Basin in Northern Taiwan has become highly urbanized and densely populated area. Flood inundation along riversides frequently occurred during typhoons or rainstorms. Three protection measures, including constructions of high-level protection levees, a diversion channel, and a detention reservoir, were proposed for flood mitigation. The main purpose of this study is to evaluate the flood mitigation performance of the three proposed structural measures by using combined hydrologic analyses and hydraulic routings. A semi-distributed parallel-type linear reservoirs rainfall-runoff model was used for estimating the surface runoff. Furthermore, a 1-D dynamic channel routing model was coupled with a two-dimensional inundation model to simulate the hydraulic characteristics of river flooding and overland flow. Simulation results of flood stages, runoff peak discharges, and inundation extent under design rainfall scenarios were chosen as the criteria for evaluation. The results showed a diversion channel is superior to the other two measures for flood mitigation of the study area. After the process of environmental impact assessment, a revised diversion channel approach has been approved for construction as the major structural measure.  相似文献   

8.
Inundation caused by landslide dams may occur in the upstream and downstream of the dams. A proper flooding hazard assessment is required for reaction planning and decision-making to mitigate possible flooding hazards caused by landslide dams. Both quick and detailed procedures can be used to evaluate inundation hazards, depending on the available time and information. This paper presents a systematic approach for the assessment of inundation hazards and risks caused by landslide dam formation and breaches. The approach includes the evaluation of dam-breach probability, assessment of upstream inundation hazard, assessment of downstream inundation hazard, and the classification of flooding risk. The proposed assessment of upstream inundation estimates the potential region of inundation and predicts the overtopping time. The risk level of downstream flooding is evaluated using a joint consideration of the breach probability of a landslide dam and the level of flooding hazard, which is classified using a flooding hazard index that indicates the risk of potential inundation. This paper proposes both quick and detailed procedures for the assessments of inundation in both the upstream and downstream of a landslide dam. An example of a landslide dam case study in southern Taiwan was used to demonstrate the applicability of the systematic approach.  相似文献   

9.
Thanks to modelling advances and the increase in computational resources in recent years, it is now feasible to perform 2-D urban flood simulations at very high spatial resolutions and to conduct flood risk assessments at the scale of single buildings. In this study, we explore the sensitivity of flood loss estimates obtained in such micro-scale analyses to the spatial representation of the buildings in the 2D flood inundation model and to the hazard attribution methods in the flood loss model. The results show that building representation has a limited effect on the exposure values (i.e. the number of elements at risk), but can have a significant impact on the hazard values attributed to the buildings. On the other hand, the two methods for hazard attribution tested in this work result in remarkably different flood loss estimates. The sensitivity of the predicted flood losses to the attribution method is comparable to the one associated with the vulnerability curve. The findings highlight the need for incorporating these sources of uncertainty into micro-scale flood risk prediction methodologies.  相似文献   

10.
Taihu Lake is at the densely populated region of the eastern coast of China. Taihu Basin is one of the most developed regions of China. The frequency of flood disaster in Taihu Basin has been increasing in the recent years, resulting in more drowned areas and economic loss. It is shown that flood disaster is the most serious problems in Taihu Lake and Taihu Basin. Mitigation of flood problems and return to sustainability has now been given high attention and are prioritized in the Chinese national policies. This paper describes the state of the flood disaster in the Taihu Basin, examines the root causes for flood disaster, demonstrates by examples how these analyses known as transboundary diagnostic analysis can be used to develop policy options that can help predict and reduce the flood disaster based on past and current measures and policy.  相似文献   

11.
Mehrabi  Mohammad 《Natural Hazards》2022,111(1):901-937

This study deals with landslide susceptibility mapping in the northern part of Lecco Province, Lombardy Region, Italy. In so doing, a valid landslide inventory map and thirteen predisposing factors (including elevation, slope aspect, slope degree, plan curvature, profile curvature, distance to waterway, distance to road, distance to fault, soil type, land use, lithology, stream power index, and topographic wetness index) form the spatial database within geographic information system. The used predictive models comprise a bivariate statistical approach called frequency ratio (FR) and two machine learning tools, namely multilayer perceptron neural network (MLPNN) and adaptive neuro-fuzzy inference system (ANFIS). These models first use landslide and non-landslide records for comprehending the relationship between the landslide occurrence and predisposing factors. Then, landslide susceptibility values are predicted for the whole area. The accuracy of the produced susceptibility maps is measured using area under the curve (AUC) index, according to which, the MLPNN (AUC?=?0.916) presented the most accurate map, followed by the ANFIS (AUC?=?0.889) and FR (AUC?=?0.888). Visual interpretation of the susceptibility maps, FR-based correlation analysis, as well as the importance assessment of predisposing factors, all indicated the significant contribution of the road networks to the crucial susceptibility of landslide. Lastly, an explicit predictive formula is extracted from the implemented MLPNN model for a convenient approximation of landslide susceptibility value.

  相似文献   

12.
In this study, we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models. We created a geographic information system database, and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth, aerial photographs, and other validated sources. A support vector regression (SVR) machine-learning model was used to divide the landslide inventory into training (70%) and testing (30%) datasets. The landslide susceptibility map was produced using 14 causative factors. We applied the established gray wolf optimization (GWO) algorithm, bat algorithm (BA), and cuckoo optimization algorithm (COA) to fine-tune the parameters of the SVR model to improve its predictive accuracy. The resultant hybrid models, SVR-GWO, SVR-BA, and SVR-COA, were validated in terms of the area under curve (AUC) and root mean square error (RMSE). The AUC values for the SVR-GWO (0.733), SVR-BA (0.724), and SVR-COA (0.738) models indicate their good prediction rates for landslide susceptibility modeling. SVR-COA had the greatest accuracy, with an RMSE of 0.21687, and SVR-BA had the least accuracy, with an RMSE of 0.23046. The three optimized hybrid models outperformed the SVR model (AUC = 0.704, RMSE = 0.26689), confirming the ability of metaheuristic algorithms to improve model performance.  相似文献   

13.
Shen  Ji  Tan  Fangbi 《Natural Hazards》2020,104(1):927-957
Natural Hazards - In China, flood inundation modeling is often limited by the lack of high quality topographic dataset, especially in small cities where hydrologic informatization is relatively...  相似文献   

14.
The Hattian landslide, which was triggered by the 2005 Kashmir earthquake, formed one of largest landslide dams in the world and it has posed a serious threat of flooding to people living in the lower reach of the Jhelum River. In order to understand deformation occurring in the body of the dam, physical measurements using a Differential Global Positioning System (DGPS) were conducted. Gradual deformation and slowly developing backward erosion initially were observed, leading eventually to a sudden creation of a deep hollow on the downstream slope of the landslide dam. The dimensions of this eroded gully were determined by laser scanning, and the results showed a significant loss of soil volume and a large change in the body of the dam. A breach formation model was used to predict the outflow hydrograph generated by constant downcutting of dam during a breaching event. A run-off analysis of the outflow hydrograph was conducted to evaluate inundation levels of flood waves in case the dam is breached. Hazardous downstream locations were identified near the junction of the Karli and Jhelum Rivers, suggesting a need for early warning system in order to avoid loss of lives.  相似文献   

15.
The recurrent flooding during monsoon and subsequent waterlogging in the northern Bihar plains and the magnitude of losses due to these hazards indicate the continuing vulnerability of the region to flood and waterlogging. Management of floods and waterlogging hazards in highly flood-prone regions of India, including Bihar state has been largely response oriented with little or no attention to mitigation and preparedness. This paper presents a method for spatial, Geographic Information Systems-based assessment of flood and waterlogging vulnerability and risk in northern Bihar plains. Multitemporal satellite data was used to evaluate the area statistics and dynamics of waterlogging over the period from 1975 to 2008. The flood proneness is evaluated at district level with reference to flood inundation during a period from 1998 to 2008. Census data were used to examine the socio-economic characteristics of the region through computation of population density, cultivators, agricultural labourers, sex ratio, children in age group 0–6 years and literates. The geohazard map derived by combining area prone to waterlogging and flood inundation was multiplied with socio-economic vulnerability map to derive the flood-waterlogging risk map of the region. The result shows that flood and water-logging pose highest risk to the central districts in the northern Bihar plains with 50.95% of the total area under high and very high risk.  相似文献   

16.
Papaioannou  G.  Loukas  A.  Vasiliades  L.  Aronica  G. T. 《Natural Hazards》2016,81(1):117-144
An innovative approach in the investigation of complex landscapes for hydraulic modelling applications is the use of terrestrial laser scanner (TLS) that can lead to a high-resolution digital elevation model (DEM). Another notable factor in flood modelling is the selection of the hydrodynamic model (1D, 2D and 1D/2D), especially in complex riverine topographies, that can influence the accuracy of flood inundation area and mapping. This paper uses different types of hydraulic–hydrodynamic modelling approaches and several types of river and riparian area spatial resolution for the implementation of a sensitivity analysis for floodplain mapping and flood inundation modelling process at ungauged watersheds. Four data sets have been used for the construction of the river and riparian areas: processed and unprocessed TLS data, topographic land survey data and typical digitized contours from 1:5000-scale topographic maps. Modelling approaches combinations consist of: one-dimensional hydraulic models (HEC-RAS, MIKE 11), two-dimensional hydraulic models (MIKE 21, MIKE 21 FM) and combinations of coupled hydraulic models (MIKE 11/MIKE 21) within the MIKE FLOOD platform. Historical flood records and estimated flooded area derived from an observed extreme flash-flood event have been used in the validation process using 2 × 2 contingency tables. Flood inundation maps have been generated for each modelling approach and landscape configuration at the lower part of Xerias River reach at Volos, Greece, and compared for assessing the sensitivity of input data and model structure uncertainty. Results provided from contingency table analysis indicate the sensitivity of floodplain modelling on the DEM spatial resolution and the hydraulic modelling approach.  相似文献   

17.
孙君  奚赛英  尤迪  郑付涛 《城市地质》2012,7(3):31-33,37
洪水淹没范围的确定是洪灾损失评估和防洪决策的核心环节。基于TIN数据,运用ArcMap,采用"无源淹没分析"方法对区域天然防洪能力进行划分;实现了在给定水位条件下,对洪水淹没范围提取与统计计算,建立了洪水水位高程和淹没面积关系公式,并用于洪水淹没快速预测;运用ArcScene,对水位抬升的"无源渐进淹没"情况进行了三维模拟。  相似文献   

18.
This paper assesses the socioeconomic consequences of extreme coastal flooding events. Wealth and income impacts associated with different social groups in coastal communities in Israel are estimated. A range of coastal flood hazard zones based on different scenarios are identified. These are superimposed on a composite social vulnerability index to highlight the spatial variation in the socioeconomic structure of those areas exposed to flooding. Economic vulnerability is captured by the exposure of wealth and income. For the former, we correlate the distribution of housing stock at risk with the socioeconomic characteristics of threatened populations. We also estimate the value of residential assets exposed under the different scenarios. For the latter, we calculate the observed change in income distribution of the population under threat of inundation. We interpret the change in income distribution as an indicator of recovery potential.  相似文献   

19.
In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.  相似文献   

20.
Huangpu River floodplain is historically vulnerable to flooding due to its location in the path of tropical cyclones, low elevation, relatively flat topography, rapid changes in sea level and fast rate of land subsidence due to urbanization. This paper presents a scenario-based study that investigates the fluvial flood potentials in the Huangpu River floodplain. Flood scenarios with return periods of 50, 100, 200, 500 and 1,000 years were designed to cover the probable situations. Further, a flood inundation model (FloodMap) that tightly couples a river flow model with a 1D solution of the full form of the St. Venant equations and a 2D floodplain flow model was used to predict the river flow and inundation extents. Flood characteristics obtained from the simulations were used in the exposure analysis to determine the spatial distribution of susceptible land uses under different scenarios. Results suggest that overtopping inundation mainly occurs within 1–2 km of the banks of the Huangpu River, with larger inundation extent predicted in the upper and middle reaches of the channel, a result of varying protection levels from relatively rural upstream to high urbanized floodplain in the vicinity of the middle reaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号