首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国大陆科学钻主孔现今地应力状态   总被引:3,自引:0,他引:3  
用钻孔崩落法确定了中国大陆科学钻探主钻孔5 047 m深度以上的现今地应力状态.由钻孔声波成像测井资料发现, 科学钻主钻孔在1 200 m深度以下出现了钻孔崩落现象.我们从1 216~5 047 m的深度范围内采集了143个钻孔成像测井图象资料, 对钻孔崩落椭圆长轴方位进行了统计, 结果表明崩落椭圆长轴平均方位为319.5°±3.5°, 最大水平主应力方位平均为49.5°±3.5°.利用崩落形状要素(崩落深度和崩落宽度) 以及岩石的内聚力和内摩擦角, 估算了1 269 m至5 047 m范围内52个深度上的最大和最小水平主应力的大小.结果表明, 在浅处1 216 m深度, 最大水平主应力为42 MPa, 最小水平主应力为30.3 MPa; 在深处5 000 mm深度, 最大水平主应力为160.5 MPa, 最小水平主应力为120 MPa; 地应力随深度近于线性增加.据岩石密度测井资料计算了各个深度上静负载应力.3个主应力的大小和方向反映出科学钻主孔位置的应力场处于走滑应力状态, 与临近地区地震震源机制解和其他方法得到的应力场一致.利用声发射法对岩心试件进行了声发射测量, 得到了最大水平主应力幅值, 并与崩落法测量结果进行了对比, 两者十分一致.   相似文献   

2.
The development of Hot-Dry Rock (HDR) geothermal energy in Australia with drillings to some kilometres depth yields an impetus for deep stress logging. For the Olympic Dam HDR-project, borehole Blanche-1 was drilled to almost 2 km depth and provided the possibility to estimate the in situ stresses within the granitic borehole section by the analysis of borehole breakouts and core discing, as well as by hydraulic fracturing combined with acoustic borehole televiewer logging for fracture orientation determination. Although the stress magnitudes derived by the different methods deviate significantly, they clearly indicate for the depth range between 800 and 1,740 m a compressional stress regime of S v ≤ S h < S H and a consistent East–West orientation of maximum horizontal compression in agreement with existing stress data for Australia. The minor horizontal stress S h derived from the hydraulic fracturing closure pressure values is about equal to the overburden stress and may be regarded as most reliable.  相似文献   

3.
A vertical profile of maximum horizontal principal stress, SHmax, orientation to 5 km depth was obtained beneath the Swiss city of Basel from observations of wellbore failure derived from ultrasonic televiewer images obtained in two 1 km distant near-vertical boreholes: a 2755 m exploration well (OT2) imaged from 2550 m to 2753 m across the granitic basement-sediment interface at 2649 m; and a 5 km deep borehole (BS1) imaged entirely within the granite from 2569 m to 4992 m. Stress-related wellbore failure in the form of breakouts or drilling-induced tension fractures (DITFs) occurs throughout the depth range of the logs with breakouts predominant. Within the granite, DITFs are intermittently present, and breakouts more or less continuously present over all but the uppermost 100 m where they are sparse. The mean SHmax orientations from DITFs is 151 ± 13° whereas breakouts yield 143 ± 14°, the combined value weighted for frequency of occurrence being N144°E ± 14°. No marked depth dependence in mean SHmax orientation averaged over several hundred meters depth intervals is evident. This mean SHmax orientation for the granite is consistent with the results of the inversion of populations of focal mechanism solutions of earthquakes occurring between depths of 10–15 km within regions immediately to the north and south of Basel, and with the T-axis of events occurring within the reservoir (Deichmann and Ernst, this volume). DITFs and breakouts identified in OT2 above and below the sediment-basement interface suggest that a change in SHmax orientation to N115°E ± 12° within the Rotliegendes sandstone occurs near its interface with the basement. The origin of the 20–30° change is uncertain, as is its lateral extent. The logs do not extend higher than 80 m above the interface, and so the data do not define whether a further change in stress orientation occurs at the evaporites. Near-surface measurements taken within 50 km of Basel suggest a mean orientation of N–S, albeit with large variability, as do the orientation of hydrofractures at depths up to 850 m within and above the evaporite layers and an active salt diapir, also within 50 km of Basel. Thus, the available evidence supports the notion that the orientation of SHmax above the evaporites is on average more N–S oriented and thus differs from the NW–SE inferred for the basement from the BS1/OS2 wellbore failure data and the earthquake data. Changes in stress orientation with depth can have significant practical consequences for the development of an EGS reservoir, and serve to emphasise the importance of obtaining estimates from within the target rock mass.  相似文献   

4.
Stress-induced breakouts in vertical boreholes are failure zones caused by excessive compressive stress concentration at the borehole wall along the springline of the least horizontal far-field stress. Wellbores are sometimes drilled into aquifers or oil reservoirs that are weak, poorly consolidated, and highly porous sandstone formations, which are often conducive to breakout formation. Breakouts are an expression of borehole instability and a potential source of sand production. On the other hand, the breakout phenomenon can be used advantageously in obtaining an estimate of the in situ stress condition. The average orientation of breakouts, as identified by borehole geophysical logging, is a reliable indicator of in situ stress directions. It has also been suggested that breakout dimensions could potentially be used as indicators of in situ stress magnitudes. The research reported here has concentrated on the unique type of breakouts observed for the first time in high-porosity Berea sandstone. Drilling experiments in rock blocks subjected to critical far-field true triaxial stress regimes, simulating in situ conditions, induced breakouts that were unlike the ‘dog-ear’ ones previously observed in granites, limestones, and low-porosity sandstones. The newly observed breakouts were thin, tabular, and very long, resembling fractures that counterintuitively extended perpendicular to the maximum principal stress. We found that a narrow zone ahead of a fracture-like breakout tip underwent apparent localized grain debonding and compaction. In the field, such zones have been termed ‘compaction bands’, and are a source of concern because in oil fields and aquifers they constitute curtains of low permeability that can impede the normal flow of oil or water. In order to determine whether a correlation exists between fracture-like breakouts and in situ stress, we conducted several series of tests in which the minimum horizontal and vertical stresses were held constant and the maximum horizontal stress (σH) was increased from test to test. These tests showed strong dependence of the breakout length on far-field stress, signaling that potentially the ability to assess fracture-like breakout length in the field could be used to estimate in situ stress magnitudes in conjunction with other indicators. Another series of tests revealed that breakout length increased substantially when borehole diameter was enlarged. This result suggested that in the field, where wellbore size is considerably larger, fracture-like breakout could extend to sizable distances, creating a sand production hazard. Two series of tests, one to evaluate the effect of drill-bit penetration rate, and the other to verify the drilling-fluid flow rate effect on breakout formation and dimensions yielded inconsistent results and showed no unique trends. Remarkably, fracture-like breakouts maintained a consistent narrow width of about 5–10 grain diameters, irrespective of the test conditions. This characteristic supports the suggestion that fracture-like breakouts are emptied compaction bands.  相似文献   

5.
Rock failure is observed around boreholes often with certain types of failure zones, which are called breakouts. Laboratory‐scale drilling tests in some high‐porosity quartz‐rich sandstone have shown breakouts in the form of narrow localized compacted zones in the minimum horizontal stress direction. They are called fracture‐like breakouts. Such compaction bands may affect hydrocarbon extraction by forming barriers that inhibit fluid flow and may also be a source of sand production. This paper presents the results of numerical simulations of borehole breakouts using 3D discrete element method to investigate the mechanism of the fracture‐like breakouts and to identify the role of far‐field stresses on the breakout dimensions. The numerical tool was first verified against analytical solutions. It was then utilized to investigate the failure mechanism and breakout geometry for drilled cubic rock samples of Castlegate sandstone subjected to different pre‐existing far‐field stresses. Results show that failure occurs in the zones of the highest concentration of tangential stress around the borehole. It is concluded that fracture‐like breakout develops as a result of a nondilatant failure mechanism consisting of localized grain debonding and repacking and grain crushing that lead to the formation of a compaction band in the minimum horizontal stress direction. In addition, it is found that the length of fracture‐like breakouts depends on both the mean stress and stress anisotropy. However, the width of the breakout is not significantly changed by the far‐field stresses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Summary Stress concentration at the bottom of a borehole due to the corners with small radius of curvature in an axial section and its effect on the azimuth of breakout was studied. To this end, a 3-D finite element analysis was conducted and the stress around the borehole was examined for boreholes arbitrarily oriented to three principal axes of remote stress. Results show that, in the case of high strength rock, compressive failure resulting in spalling of a borehole may occur only at the bottom of the borehole. The spalling can occur continuously with drilling, and results in continuous spalling with depth, i.e., a breakout. This type of breakout tends to form on one side of the borehole and its orientation is approximately perpendicular to the orientation of standard breakouts, inferred from the stress concentration due to the cylindrical shape of the borehole.  相似文献   

7.
We induced borehole breakouts in a 25%-porosity Berea sandstone by drilling 23 mm diameter holes into 152×152×229 mm blocks subjected to constant true triaxial far-field stresses. BSen5 consists of large quartz grains (0.5 mm) cemented mainly by sutured grain contacts. Breakouts in BSen5 are demonstratively different from those observed in granite, limestone, and lower porosity sandstones. Rather than the typically short ‘V’-shaped breakouts, BSen5 displays long fracture-like tabular slots, which counterintuitively, develop orthogonally to σH. These breakouts originate at the points of highest compressive stress at the borehole wall, along the σh spring line. Micrographs of BSen5 breakouts show an apparent compaction band created just ahead of the breakout tip in the form of a narrow layer of grains that are compacted normal to σH. The compaction band characteristics are nearly identical to those observed in the field. The mechanism leading to fracture-like breakouts is seen as anti-dilatant, and related directly to grain debonding and porosity reduction accompanying the formation of the compaction band. Some compacted grains at the borehole wall are expelled as a result of the line of tangential loading and the radial expansion of adjacent grains. The circulating drilling fluid flushes out the remaining compacted loose grains at the borehole-rock interface. As the breakout tip advances, the stress concentration ahead of it persists, extending the compaction band, which in turn leads to additional grain removal and breakout lengthening. By extrapolation, this process may continue for considerable distance (at least several times the wellbore diameter) in field situations, leading potentially to substantial sand production.  相似文献   

8.
Knowledge about the acting stresses is of crucial importance for understanding the tectonics of a region. Data about the stress field in north-eastern Germany used to be very rare. In general, it was assumed that the orientation of the larger horizontal principal stress (SH) is similar to that found for western Germany and central West-Europe, i.e. NW–SE. To check this, several borehole logs of the late 1980s were analysed for information on the principal horizontal stress orientations: they include Four-Arm-Dipmeter and borehole televiewer data from 15 boreholes. The depth range of our stress results reaches from 1500 to 6700 m. They were compared to a few other data, especially from hydraulic fracturing, and to recent findings on the stresses in the Northwest German basin. In contrast to expectation, SH derived from breakout orientations below the salt layers displayed N to NE orientation. The latter was found at 10 locations spread over the NE-German basin from Berlin to the Baltic sea, from the Polish border to the former border between East and West Germany. Moreover, this stress rotation in the subsaline formations seems to be the continuation of a trend found in the NW German basin.  相似文献   

9.
The determination of in situ stresses is very important in petroleum engineering. Hydraulic fracturing is a widely accepted technique for the determination of in situ stresses nowadays. Unfortunately, the hydraulic fracturing test is time-consuming and expensive. Taking advantage of the shape of borehole breakouts measured from widely available caliper and image logs to determine in situ stress in petroleum engineering is highly attractive. By finite element modeling of borehole breakouts considering thermoporoelasticity, the authors simulate the process of borehole breakouts in terms of initiation, development, and stabilization under Mogi-Coulomb criterion and end up with the shape of borehole breakouts. Artificial neural network provides such a tool to establish the relationship between in situ stress and shape of borehole breakouts, which can be used to determine in situ stress based on different shape of borehole breakouts by inverse analysis. In this paper, two steps are taken to determine in situ stress by inverse analysis. First, sets of finite element modeling provide sets of data on in situ stress and borehole breakout measures considering the influence of drilling fluid temperature and pore pressure, which will be used to train an artificial neural network that can eventually represent the relationship between the in situ stress and borehole breakout measures. Second, for a given measure of borehole breakouts in a certain drilling fluid temperature, the trained artificial neural network will be used to predict the corresponding in situ stress. Results of numerical experiments show that the inverse analysis based on finite element modeling of borehole breakouts and artificial neural network is a promising method to determine in situ stress.  相似文献   

10.
钻杆式水压致裂原地应力测试系统的柔性会影响最大水平主应力的计算精度。利用空心岩柱液压致裂试验获得的岩石抗拉强度来取代重张压力计算最大水平主应力是降低钻杆式测试系统柔性的负面影响的重要途径。在福建某隧道深度为65 m的钻孔内开展了8段的高质量水压致裂原地应力测试,随后利用钻孔所揭露的完整岩芯开展了17个岩样的空心岩柱液压致裂试验。利用空心岩柱液压致裂所得的抗拉强度平均值为8.40 MPa,与经典水压致裂法确定的岩体抗拉强度8.22 MPa接近。对于20 m的范围内8个测段的原地应力量值,最小水平主应力平均值为8.41 MPa,基于重张压力Pr的最大水平主应力平均值为16.70 MPa;基于空心岩柱抗拉强度的最大水平主应力量值平均值为16.88 MPa,两种方法获得的最大水平主应力平均值基本一致。最大最小水平主应力与垂直主应力之间的关系表现为σH > σV > σh,这种应力状态有利于区域走滑断层活动。通过对比分析可知,对于钻杆式水压致裂原地应力测试系统,当测试深度小且测试系统柔性小时,基于重张压力和基于空心岩柱抗拉强度得到的最大水平主应力量值差别不大,这说明基于空心岩柱的岩石抗拉强度完全可以用于水压致裂最大水平主应力的计算,同时基于微小系统柔性的水压致裂测试系统获得的现场岩体强度也是可靠的。   相似文献   

11.
白鹤滩水电站是仅次于三峡水电站的第二大水电站,位于中国西南地区川滇菱形块体内的金沙江上。通常地壳应力状态是影响地下工程安全的重要地质因素,对地下硐室稳定性分析具有重要意义。在水电站右岸厂房建设过程中,为了水电站的长期安全运营,采用超声波井下电视录井测试系统对白鹤滩右岸厂房锚固洞内7处钻孔进行测试,基于钻孔崩落数据计算了现今白鹤滩右岸厂房区域上方工程岩体的主应力方向。研究结果表明:白鹤滩右岸厂房区域最大水平主应力(SH)方向为北北东—南南西方向,主要受到构造应力、自重应力、河流剥蚀作用以及岸坡卸荷作用的共同影响,属于局部构造应力场。   相似文献   

12.
利用定向岩心进行AE法原地应力测量   总被引:2,自引:0,他引:2  
在北京市房山区迎风坡花岗闪长岩300m深钻孔中,采用以水泥端帽法为主的岩心定向技术,并在钻进和取心过程中采取特殊措施,在钻孔中距地表25m~301m整个深度段内取得了直径86mm的定向岩心。对深度294m的定向岩心进行了声发射Kaiser效应试验。岩石试件为圆柱形,直径30mm,高度75mm.在垂直方向,利用声发射Kaiser效应估计的垂直主应力为7.7MPa;在294m岩体静岩压力为7.9MPa;两者基本相同。在水平面内,对4个方向的试件进行声发射Kaiser效应试验,得到相应的各个方向的压应力,由此估算的水平最大和最小主应力分别为21.2MPa和12.1MPa.水平面内最大主应力的方向基本为SN方向。将声发射Kaiser效应测量结果与水压致裂法的测量结果进行对比,二者具有很好的一致性。   相似文献   

13.
张和伟 《地质与勘探》2020,56(4):809-818
大小及方向对深部煤层气开发影响显著。以鄂尔多斯东缘临兴西区为对象, 基于实 验测试、井壁崩落法和断层摩擦系数地应力法,分析了三向主应力方向与大小,阐释了基本特征及其空间发育规律。结果显示:8号煤层垂向应力介于44.94 ~ 50.46 MPa,平均48.47MPa;水平最大主应力介于35.16 ~ 44.53 MPa,平均40.62MPa;水平最小主应力介于28.79~39.45 MPa,平均33.02MPa。9号煤层垂向应力介于45.03~ 50.46 MPa,平均48.57MPa;水平最大主应力介于35.33~44.53 MPa,平均40.69MPa;水平最小主应力介于29.01 ~ 39.45 MPa,平均33.11MPa。误差分析显示此地应力计算结果可靠。三向地应力大小与埋深呈正相关关系。在垂向上,三向地应力相对大小表现出明显分带性,即埋深<1000m左右为Sh<Sv<SH为特征的剪切型地应力带、埋深介于1000~1800m 表现为Sh<SH<Sv过渡带、埋深>1800m左右表现为Sh<SH<Sv为特征的正断型地应力带。在平面上,地应力在平面上总体呈西北部低、中部与南部高、其余地区适中,主要在T-23-2井和T-19井区存在应力低值带。最大水平主应力地应力方向主要以EW-NEE向为主。地应力场的阐释将为研究区深煤层储层物性评价、勘探选区及钻完井工程设计提供地质参考。  相似文献   

14.
新建川藏铁路穿越鲜水河活动构造带,沿线构造应力场极其复杂,隧道围岩工程破坏问题突出。为了揭示该区构造应力场特征,为深埋隧道设计、施工提供基础参数,采用新型水压致裂地应力测量系统在川西郭达山隧道水平孔获得10段有效地应力测量数据,最大测量深度达508.10 m,创造了水平孔地应力测量最深记录。测量结果表明,在148.4~508.1 m测量深度范围,郭达山隧道水平孔截面上最大主应力值为3.59~13.72 MPa,最小主应力值为3.28~8.36 MPa。根据印模实验结果,除浅部钻孔截面上最大主应力倾角较大外,深部钻孔截面上最大主应力倾角近水平。根据地应力状态将0~280 m段划分为应力释放区,280~330 m段为应力集中区,大于330 m段为原地应力区。基于地应力测量结果对郭达山隧道水平孔围岩稳定性进行了预判分析,在孔深292.9 m、508.10 m处隧道围岩有轻微至中等程度岩爆可能,其余段无岩爆可能性。  相似文献   

15.
雪峰山深孔水压致裂地应力测量及其意义   总被引:5,自引:5,他引:0  
利用最新研制的深孔水压致裂地应力测量设备在雪峰山2000 m科钻先导孔内开展了原地应力测量,在孔深170~2021 m范围内获得了16个测段的有效地应力测量数据,是国内首次利用水压致裂法获得的孔深超过2000 m深度的原地应力测量成果。测量结果表明,地应力随孔深增加而逐渐加大,对实测数据进行线性回归,得到最大和最小水平主应力随深度变化的关系分别为:SH=0.03328H+5.25408,Sh=0.0203H+4.5662,在孔深2021 m深度,其实测值分别为66.31 MPa和43.33 MPa。基于实测数据,结合钻孔成像测试和井温测试结果,对测点应力状态进行了综合分析。在170~800 m深度范围,三向主应力关系为SH > Sh > Sv,有利于逆断层活动;孔深1000~2021 m表现为SH > Sv > Sh,表明该区域深部应力结构属于走滑型。最大水平主应力方向为北西-北西西方向。基于实测地应力数据及莫尔-库伦破裂准则,对测区附近断层活动性进行了分析讨论,认为该区域断层处于稳定状态。   相似文献   

16.
The regional stress field in the northern North Sea (offshore western Norway) has been studied through the acquisition and analysis of directions of maximum horizontal compression (H) as extracted from borehole breakouts and from earthquake focal mechanism solutions.
The results indicate that the regional stress field is dominated by NW-SE compression, with good consistency between shallow borehole breakouts (2–5 km depth) and deeper earthquakes (10–25 km depth). The broad spatial consistency in stress direction indicates that the main stress field is related to factors of primarily plate tectonic origin, and the results are in good agreement with the western Europe trend found in earlier investigations.
The Tampen Spur region in the northern North Sea has been subjected to particularly complex deformation, with two dominating fault directions trending NW-SE and NE-SW. From Tampen Spur in the west to the Sogn graben in the east an anomalous stress field is indicated, with NE-SW oriented maximum horizontal compressions. This anomaly is clearly seen both in the borehole breakout data and in the earthquake data. Possible sources for this anomaly are discussed, and include postglacial uplift and/or lateral variations in the physical properties of the crust.  相似文献   

17.
In situ stress measurements by hydraulic fracturing were carried out in the 617 m deep borehole specially drilled in the epicentral zone of the 1993 Latur earthquake for the purpose of research. The stress measurements carried out at 592 m depth in this borehole are the deepest of all such measurements made so far in the Indian shield. The maximum and minimum principal horizontal stresses (S H max andS h min) have been derived from the hydrofracture data using the classical method. TheS H max andS h min are found to be 16.5 and 9.6 MPa at 373 m depth, and 25.0 and 14.1 MPa at 592 m depth, indicating that the vertical gradients ofS hmax andS hmin in the epicentral zone are 39 MPa/km and 21 MPa/km respectively. The principal horizontal stresses in the epicentral zone are comparable with those at Hyderabad and 30% higher than in most other comparable intra-continental regions. Analysis of the results indicate that the stresses in the focal region of the 1993 Latur earthquake have not undergone any significant change following its occurrence and this is in agreement with a similar inference drawn from the seismic data analysis. It appears that the Latur earthquake was caused due to rupturing of the overpressured fault segment at the base of the seismogenic zone.  相似文献   

18.
The Chinese Continental Scientific Drilling (CCSD) project, part of the International Continental Drilling Program (ICDP), has completed drilling a 5158 m hole in the eastern part of the Dabie-Sulu ultrahigh-pressure metamorphic belt. This study reports on an apatite fission track analysis of core samples from 0 to 4000 m depth in the CCSD main hole (CCSD-MH). We determined the fission track ages of 38 apatite samples from different depths. The ages range between 98.6 ± 17.0 and 3.2 ± 1.3 Ma, showing a general decreasing trend with depth, from 87.1 ± 11.2 Ma at the surface to 3.2 ± 1.3 Ma at 3899 m depth. As a first approximation, an average uplift rate of ~ 35 m/Ma is calculated for the period 90-30 Ma. The trend in ages within the borehole shows some fluctuations, and indicates movements along major faults. It is inferred that the highest-level major normal fault occurs at a depth of ~ 350 m, recording a vertical displacement of ~ 400 m. Movement along another prominent normal fault at a depth of ~ 2150 m occurred subsequent to ~ 25 Ma. Three major reverse faults occur at about 2450, 3050 and 3250 m depth. Testing geological constrains against the fission track data set indicated an agreement with a reheating of the area during the late Cretaceous and Eocene, followed by cooling to ~ 80 °C during the Eocene and a low cooling until the samples reached their present-day position in the Donghai area.  相似文献   

19.
In Italy, the horizontal stress directions are well constrained in many regions, but the tectonic regime is not well known because the stress magnitudes are unknown. Our intention is to improve the knowledge of crustal stress in Italy, both at shallow depth and in low seismicity areas. Therefore, we inferred the tectonic regime from the comparison between the depth of breakout occurrence and the physical properties of the rocks in 20 boreholes. The critical value of the maximum horizontal stress, for which the effective tangential stress at the borehole wall overcomes the rock strength to form breakouts, could be computed from rock strength and density. Comparing the theoretical stress distributions for different tectonic regimes with the depth distribution of breakout occurrence, it is possible to infer the tectonic regime that fits best to the breakout depth distribution. We investigated boreholes up to 6 km deep located in different tectonic environments over the Italian peninsula: the Po Plain, the Apenninic chain, the Adriatic foredeep and the Tyrrhenian Quaternary volcanic region. These wells are characterised by breakout data of good quality (A, B and C, according to World Stress Map quality ranking system). The results are in general agreement with the style of faulting derived from earthquake focal mechanisms and other stress indicators. Our results show a predominance of a normal faulting (NF) regime in the inner Apennines and both normal faulting and strike–slip faulting (SS) style in the surrounding regions, possibly also associated with changes in the tectonic regime with depth.  相似文献   

20.
深埋特长隧道工程的高地应力问题越来越受到重视,如何准确高效地确定工程区地应力状态,是目前关注的重点和难点。针对深埋特长隧道地应力状态的确定问题,我们提出了基于多源数据的初始原地应力方向综合确定和应力量值预测及复核的综合解决方案。通过勘察阶段有限钻孔的地应力测试,并结合区域多源地应力资料,可以综合确定地应力方向并利用修正的Sheorey模型预测隧道轴线地应力;针对预测结果,在隧道开挖施工过程中,进一步利用有限钻孔的水压致裂地应力测试检验预测结果并复核隧道应力状况。结果表明,桃子垭隧道水平最大主应力方向为N15°W~N40°W,实测三向应力关系为SH≥Sv>Sh;钻孔附近的应力预测值在区域实测应力量值变化范围内,隧道埋深最大处的水平最大、最小应力值分别达24 MPa和16 MPa;隧道施工过程中的4个钻孔应力量值复核结果显示,除了局部受到岩性变化、断裂破碎带等影响出现偏差,本文预测结果与实测应力量值基本一致。笔者发展的原地应力综合预测及复核方法,一方面可以快速有效地预测深埋特长隧道等线状工程的原地应力状态,有效降低初始勘察阶段地应力测试成本,另一方面,应力量值的复核保证了应力预测结果的可靠性,可以为隧道施工方案的及时变更及预算调整等提供有力依据和数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号