首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   

2.
The fifth version of natural river water certified reference material, SLRS‐5 (National Research Council – Conseil National de Recherches Canada), is commonly used to control the quality of major and trace element measurements. Concentrations of silicon and thirty‐one uncertified trace elements have been reported for the certified reference material SLRS‐4, but they are not yet available for SLRS‐5. Here, SLRS‐5/SLRS‐4 ratios were deduced from SLRS‐5 and SLRS‐4 measurements by inductively coupled plasma‐atomic emission spectrometry and high‐resolution inductively coupled plasma‐mass spectrometry for certified elements and thirty‐five uncertified elements (rare earth elements, B, Bi, Br, Cs, Ga, Ge, Hf, Li, Nb, P, Pd, Rb, Rh, S, Sc, Si, Sn, Th, Ti, Tl, Y). Both reference materials were measured directly one after the other, so that calculated elemental ratios would not be notably influenced either by calibration uncertainties or by eventual long‐term instrumental drift. The computed ratios are in good agreement with those deduced from the certified values. We also report concentrations for thirty‐three uncertified elements in SLRS‐5 by combining the measured SLRS‐5/SLRS‐4 ratios and the published SLRS‐4 values. The resulting new data set provides target SLRS‐5 values, which will be useful in quality control procedures.  相似文献   

3.
We report on an improved method for determining trace element abundances in seawater and other natural waters. The analytical procedure involves co‐precipitation on iron hydroxides after addition of a Tm spike, and measurement by inductively coupled plasma‐sector field mass spectrometry (ICP‐SFMS). The validity of the method was assessed through a series of co‐precipitation experiments, using ultra‐diluted solutions of a certified rock reference material (BIR‐1). Results obtained for four natural water reference materials (NASS‐5, CASS‐4, SLEW‐3, SLRS‐4) are in agreement with published working values for rare earth elements, yttrium, vanadium and, when available, for hafnium, zirconium, thorium and scandium. A set of proposed values with uncertainties typically better than 8% RSD is proposed for Hf, Zr and Th.  相似文献   

4.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

5.
This study reports a robust procedure that permits precise measurement of all fourteen naturally occurring rare earth element (REE) concentrations, present at ng kg?1 to sub ng kg?1 levels, in ~ 100 ml seawater. This procedure is simple and can be routinely applied to measure seawater REEs with relatively high sample throughput. The procedure involves addition of a 142Ce‐145Nd‐171Yb‐enriched spike mixture, iron co‐precipitation, REE purification with chromatographic separation and the use of a magnetic‐sector‐field ICP‐MS (Element 2) coupled with a desolvating sample introduction system (Aridus 1). Critical steps of the procedure, including co‐precipitation pH and matrix removal, have been optimised through a set of experiments described here. The accuracy of the new procedure was assessed against a gravimetric mixture of REEs, and the precision was demonstrated by repeated measurement of two well‐mixed natural seawaters. Repeated analyses of these seawater reference materials (RMs), using ~ 100 ml seawater for each aliquot, indicate precision of 3% (1s) for the REEs. Measured REE concentrations of two uncertified seawater RMs (CASS‐4 and NASS‐5) are consistent with published values, and REE concentrations of the GEOTRACES intercalibration samples show good agreement with those reported by other participant laboratories. REE concentrations for other intercalibration samples (SAFe and Arctic PS70) are also reported.  相似文献   

6.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

7.
To enable quality control of measurement procedures for determinations of Mg isotope amount ratios, expressed as δ26Mg and δ25Mg values, in Earth‐surface studies, the δ26Mg and δ25Mg values of eight reference materials (RMs) were determined by interlaboratory comparison between five laboratories and considering published data, if available. These matrix RMs, including river water SLRS‐5, spring water NIST SRM 1640a, Dead Sea brine DSW‐1, dolomites JDo‐1 and BCS‐CRM 512, limestone BCS‐CRM 513, soil NIST SRM 2709a and vegetation NIST SRM 1515, are representative of a wide range of Earth‐surface materials from low‐temperature environments. The interlaboratory variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17‰ in δ26Mg. Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg determinations in Earth‐surface geochemical studies.  相似文献   

8.
We present a new method for the decomposition of silicate rocks by flux‐free fusion in preparation for whole‐rock trace element determination (Sc, Rb, Sr, Y, Zr, Nb, Cs, Ba, rare earth elements and Hf) that is especially applicable to zircon‐bearing felsic rocks. The method was verified by analyses of RMs of mafic (JB‐1a, JB‐2, JGb‐1) and felsic rocks (JG‐3, JR‐3, JSd‐1, GSP‐2, G‐2). Pellets of powdered sample (up to 500 mg) without flux were weighed and placed in a clean platinum crucible. The samples were then fused in a Siliconit® tube furnace and quenched to room temperature. The optimum condition for the fusion of granitic rock was determined to be heating for 2–3 min at 1600 °C. The fused glass in the platinum crucible after heating was decomposed using HF and HClO4 in a Teflon® beaker. Decomposed and diluted sample solutions were analysed using a quadrupole inductively coupled plasma‐mass spectrometer. Replicate analyses (n = 4 or 5) of the RMs revealed that analytical uncertainties were generally < 3% for all elements except Zr and Hf (~ 6%) in JG‐3. These higher uncertainties may be attributed to sample heterogeneity. Our analytical results for the RMs agreed well with recommended concentrations and recently published concentrations, indicating complete decomposition of our rock samples during fusion.  相似文献   

9.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

10.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

11.
This paper presents parallel and serial viscoelasto‐plastic models to simulate the rate‐independent and the rate‐dependent permanent deformation of stone‐based materials, respectively. The generalized Maxwell viscoelastic and Chaboche's plastic models were employed to formulate the proposed parallel and serial viscoelasto‐plastic constitutive laws. The finite element (FE) implementation of the parallel model used a displacement‐based incremental formulation for the viscoelastic part and an elastic predictor—plastic corrector scheme for the elastoplastic component. The FE framework of the serial viscoelasto‐plastic model employed a viscoelastic predictor—plastic corrector algorithm. The stone‐based materials are consisted of irregular aggregates, matrix and air voids. This study used asphalt mixtures as an example. A digital sample was generated with imaging analysis from an optically scanned surface image of an asphalt mixture specimen. The modeling scheme employed continuum elements to mesh the effective matrix, and rigid bodies for aggregates. The ABAQUS user material subroutines defined with the proposed viscoelasto‐plastic matrix models were employed. The micromechanical FE simulations were conducted on the digital mixture sample with the viscoelasto‐plastic matrix models. The simulation results showed that the serial viscoelasto‐plastic matrix model generated more permanent deformation than the parallel one by using the identical material parameters and displacement loadings. The effect of loading rates on the material viscoelastic and viscoelasto‐plastic mixture behaviors was investigated. Permanent deformations under cyclic loadings were determined with FE simulations. The comparison studies showed that the simulation results correctly predicted the rate‐independent and rate‐dependent viscoelasto‐plastic constitutive properties of the proposed matrix models. Overall, these studies indicated that the developed micromechanical FE models have the abilities to predict the global viscoelasto‐plastic behaviors of the stone‐based materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
《Resource Geology》2018,68(1):22-36
The Y ejiwei deposit, which is located in the southern H unan W –Sn –Pb –Z n M etallogenic B elt in south C hina, is a large‐scale porphyry–skarn–veinlet‐type deposit containing 806 t I n. M ineralization occurs as porphyry‐type S n (stockworks), skarn‐type S n–C u, marble‐hosted‐type S n–C u (veinlet), and vein‐type P b–Z n ores. Thirty‐five ore samples were collected from the Y ejiwei deposit for bulk and mineral chemical composition, microscopic observation and electron microprobe analyses. The porphyry‐type S n ores contain variable amounts of I n (2.3–76 ppm; mean of 17.4 ppm) with local I n enrichment (226 ppm) and 1000 × I n/Z n values are 3.8–52.4. The skarn‐type C u–S n ore is richest in I n (12.3–214 ppm; mean of 114 ppm), and 1000 × I n/Z n values are 2.4–117. In contrast, the In content of the marble‐hosted‐type C u–S n ores is relatively low (7.4–34.9 ppm; mean of 20.3 ppm), and 1000 × I n/Z n is in the range of 0.61–5.5, and the vein‐type P b–Z n ores in the external zone contain the lowest I n contents (7.2–17.0 ppm; mean of 12.1 ppm) with 1000 × I n/Z n values of 0.07–0.09. The ore minerals in the deposit include pyrite, pyrrhotite, cassiterite, and I n‐bearing minerals of sphalerite, chalcopyrite, and stannite. Although only trace amounts of sphalerite are hosted in the porphyry ores, the sphalerite contains the highest I n content (0.27–10.1 wt.% I n) in the deposit. We observed the highest I n contents of all I n‐bearing sphalerite reported in C hina. The I n contents of sphalerite in the skarn‐type ore range from 0.15 to 0.56 wt.%, whereas the marble‐hosted‐, and vein‐type ores have lower I n contents (0.00–0.04, and 0.03–0.06 wt.%, respectively). The In resources of the Y ejiwei deposit are mainly hosted in skarn ores of the No. 31 and No. 32 orebodies. The genesis of I n in the Y ejiwei deposit was closely related to the shallow intrusive environment of related igneous rocks. As W –S n–M o–B i–C u–P b–Z n–A g mineralization is widespread in south H unan, this study would suggest a focus on skarn‐type S n–Z n deposits for the future prospecting of I n resources.  相似文献   

13.
Mathematical modelling was combined with experimental Cu isotope measurements to demonstrate the effect of the sample matrix in changing the absolute and relative abundances of spectral interferences from Ti and Cr species. This unforeseen non‐spectral effect, evidenced by variable inaccuracies of the different Zn‐normalised Cu isotope ratios, was investigated by comparing real sedimentary samples and artificial solutions intended to match the Cu:Ti:Cr ratios of the real samples after (one or two step) chromatographic processing. Artificial solutions showed positive bias in δ65CuX/Y with the magnitude depending on (a) the 6XZn/6YZn ratio used for normalisation, (b) the Ti/Cu ratio and (c) the transmission coefficient of the TiO species. In contrast, real samples showed different δ65CuX/Y patterns and displayed a more complex population of Ti and Cr oxides and hydroxides, giving rise to positive and negative inaccuracies that were two to six times higher compared with the artificial samples. The results evidence contrasting behaviour of Ti and Cr when forming polyatomic species in the plasma and stress that artificial solutions may fail to predict how residual elements interact with the analyte/dopant pair during MC‐ICP‐MS analyses. More importantly, the study shows that all Zn isotope ratios do not have the same merit in correcting for mass bias in the presence of matrix elements and should all be monitored to verify the absence of spectral interferences for Cu isotope measurements. In this respect, accurate Cu data could be generally obtained by a two‐step chromatographic purification providing a minimum reduction of ~ 21000 and ~ 3000 times the initial amounts of Ti and Cr, respectively.  相似文献   

14.
We report a measurement procedure to determine simultaneously the major cation concentrations (Na, Ca, K and Mg) of seawater‐derived solutions by inductively coupled plasma‐atomic emission spectrometry. The best results were obtained when the IAPSO (‘standard’) seawater reference material was diluted by thirty times with Milli‐Q® water. We obtained an average reference value rK (the ratio of the mass fraction of potassium to that of chlorine, i.e., (g kg?1)/(g kg?1)) for IAPSO seawater of 0.0205 ± 0.0006 (2.9% RSD), not significantly different from 0.0206 ± 0.0005 (2.4% RSD) for seawater composition reported in the literature. The measured Na, Ca and Mg concentrations correspond to rNa, rCa and rMg values of 0.5406 ± 0.0026 (0.5% RSD), 0.02192 ± 0.00048 (2.2% RSD) and 0.06830 ± 0.00047 (0.7% RSD), respectively, in line with previous values measured by wet‐chemistry and atomic absorption spectrophotometry or wet‐chemical titration. Our measurement procedure was used successfully on synthetic seawater solutions and high‐temperature hydrothermal fluids.  相似文献   

15.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

16.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   

17.
The influence of non‐spectral matrix effects on the determination of twenty‐two trace elements (Rb, Sr, Y, Cs, Ba, lanthanides, Pb, Th and U) in rock samples using ICP‐MS was investigated. Three types of multi‐element solutions were synthesised containing the twenty‐two trace elements, In, Tl and ten major rock‐forming elements with varying mass fractions mimicking the compositions of basalt, peridotite and dolomite. The synthetic solutions were conditioned to have dilution factors (DF) of 1000–10000. The extent of sensitivity suppression relative to the DF = 10000 solution became more significant for smaller DF solutions, which was not constant across different elements in a single solution but displayed general dependence on m/z. This indicates that at least two internal standards (e.g., In and Tl) are required for the correction of sensitivity variation. On the basis of the results, a new isotope dilution‐internal standardisation method for the determination of twenty‐two trace elements with ICP‐MS was developed, in which the sensitivity variation was corrected by monitoring two enriched isotopes, 113In and 203Tl. This method, coupled with the quantitative correction of interference from oxides and hydroxides, achieved precise determination of twenty‐two trace elements in some rock reference materials with reproducibilities of ±2% for basaltic to andesitic samples.  相似文献   

18.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

20.
The ultrahigh‐pressure (UHP) eclogite in the Dabie orogen preserves petrological evidence for the existence of hydrous silicate melts that formed during continental subduction‐zone metamorphism. This is indicated by occurrence of multiphase solid (MS) inclusions in garnet that primarily consist of K‐feldspar + quartz ± epidote/allanite. All the MS inclusions are euhedral to subhedral in morphology and surrounded with radial cracks in the host garnet. Their trace element compositions were analysed by two different approaches of laser sampling. The mass budget method was used to estimate the trace element abundances of MS inclusions from their mixtures with the host garnet. The results are compared with the direct sampling of MS inclusions, providing a first‐order approximation to the trace element composition of MS inclusions. The MS inclusions exhibit consistent enrichment of LILE, Sr and Pb, but depletion of HFSE in the primitive mantle‐normalized spidergram. Such arc‐like patterns of trace element distribution are common for continental crustal rocks. The melts have variably high K, Rb and Sr abundances, suggesting that breakdown of phengite is a basic cause for partial melting of the UHP eclogite. These MS inclusions also exhibit consistently low HFSE and Y contents, suggesting partial melting of the eclogite in the stability fields of rutile and garnet. Consequently, the trace element composition of MS inclusions provides a proxy for that of hydrous silicate melts derived from dehydration melting of the UHP eclogite during continental collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号