首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

2.
This study observes groundwater hydrochemical characteristics during mixing between geothermal and non-geothermal fluids in Germencik–Nazilli area in the Büyük Menderes Basin (SW Turkey). Hydrogeochemical features of 32 non-geothermal, geothermal and surface samples were studied. The mean temperatures of the geothermal reservoirs are calculated to be 150–240 °C in Germencik field, based on Na-K-Mg geothermometry. Hydrochemical characteristics of Germencik geothermal fluid differ from non-geothermal fluids, mainly Na-Cl-HCO3-type geothermal fluid, while non-geothermal fluid is mostly Ca-Mg-HCO3-SO4 type. High contents of some minor elements in geothermal fluids are most likely sourced from prolonged water-rock interaction, reflecting the signals of flow paths and residence times. A mass-balance approach was used to calculate mixing ratios between geothermal and non-geothermal fluids based on B, Cl and Na concentrations. Germencik field is considerably characterised by rising geothermal fluids and overlying non-geothermal fluids. The amount of water stored in the Quaternary aquifer evolved from a deep thermal source is low in Germencik (.5–40% geothermal fluid in non-geothermal wells). Mixing between geothermal and non-geothermal fluids has been caused by groundwater utilisation practices and is increased close to active faults. Irrigation of the shallow groundwater composition is considered as influx of low-temperature geothermal fluid.  相似文献   

3.
王冰冰 《吉林地质》2019,38(3):84-88
通过《吉林省公主岭经济开发区新凯河地热资源勘查项目》中水质分析资料,对白垩系泉头组地热流体水化学特征及其成因进行初步探讨,地热流体水化学形成作用分析基于地热流体的piper三线图和地热流体的水岩相互作用Na-K-Mg平衡图,取得了一些松辽盆地东南隆起东南部单斜地热田地热流体水化学形成的初步认识。  相似文献   

4.
在综合勘查及水文测试资料的基础上,根据用口地热田的地热地质特征,分析地热田地热流体的特征和成因。结果表明用口地热田属低温地热资源,资源丰富,水质良好,是受断裂控制的带状热储型地热田。  相似文献   

5.
Geothermal fields distributed in the southern Tibet Plateau rifts such as Yangbajing - Dangxiong basin, and the Yaluzangbu suture are characterized by intensive hydrothermal activity and high enrichment of trace elements (e.g., Li, Rb, Cs, B and Br) in geothermal springs. However, the origin of these elements and their enrichment mechanisms in those geothermal waters remain unclear. This study presents data for the enriched elements, incompatible elements, and B and Sr isotopes, in the geothermal water in the Tibetan Plateau and compares them with some typical geothermal fields worldwide, in an attempt to provide new insights into the origin and mechanism of the enrichment of these trace elements. The results indicate that all geothermal water samples from the Tibetan Plateau show more negative δ11B values than those from local precipitation and rivers. Considering the wide existence of a high-conductivity zone in the middle or even upper-crust interpreted to correspond to re-melt magmatic fluids in the Tibet, the main sources of the typical chemical composition of geothermal waters in the Tibetan Plateau can be classified into two main types: residual magmatic fluids derived from crustal partial remelting and deep circulated groundwater modified by water–rock interactions. In particular, the possible source of magmatic fluids may play a more significant role for special geochemical compositions of geothermal water in the Tibet. Such resources are beneficial for the development and utilization of the geothermal water itself and also serve as a stable source for feeding the salt lake resources.  相似文献   

6.
Review: Thermal water resources in carbonate rock aquifers   总被引:3,自引:1,他引:2  
The current knowledge on thermal water resources in carbonate rock aquifers is presented in this review, which also discusses geochemical processes that create reservoir porosity and different types of utilisations of these resources such as thermal baths, geothermal energy and carbon dioxide (CO2) sequestration. Carbonate aquifers probably constitute the most important thermal water resources outside of volcanic areas. Several processes contribute to the creation of porosity, summarised under the term hypogenic (or hypogene) speleogenesis, including retrograde calcite solubility, mixing corrosion induced by cross-formational flow, and dissolution by geogenic acids from deep sources. Thermal and mineral waters from karst aquifers supply spas all over the world such as the famous bath in Budapest, Hungary. Geothermal installations use these resources for electricity production, district heating or other purposes, with low CO2 emissions and land consumption, e.g. Germany’s largest geothermal power plant at Unterhaching near Munich. Regional fault and fracture zones are often the most productive zones, but are sometimes difficult to locate, resulting in a relatively high exploration uncertainty. Geothermal installations in deep carbonate rocks could also be used for CO2 sequestration (carbonate dissolution would partly neutralise this gas and increase reservoir porosity). The use of geothermal installations to this end should be further investigated.  相似文献   

7.
热储温度评价是地热系统研究的关键内容。文章选取建设比较成熟的美国国家地热数据系统(National Geothermal Data System,NGDS),分别利用地球化学地热温度计、多矿物平衡法、冷热水混合模型及气体地热温度计对不同地热田的热储温度进行评价,确定不同热储温度评价方法的适用性和局限性,以期为热储温度评价方法的选取提供参考。研究结果表明,当地热水体达到离子和矿物的平衡状态时,地球化学地热温度计可得到相对合理的热储温度;当地热水体未达到离子和矿物的平衡状态时,SiO2地热温度计较阳离子温度对热储温度的评价效果更准确。尽管基于饱和指数的多矿物平衡法由于有限饱和平衡矿物选择导致不一定得到精确的热储温度,但可为地球化学地热温度计的选取提供依据,比如当石英过饱和时,用玉髓地热温度计计算的温度比石英更能反映地下的热储温度。对于蒸汽为主的高温地热储层,由于蒸汽和地表岩石反应导致矿物和离子无法反映热储信息,气体地热温度计对该类型热储温度的评价更加合理。由于混合模型得到的是冷、热水混合之前的热水端温度,因此,混合模型计算的热储温度通常高于地球化学地热温度计。总之,没有一种温度计是万能的,不同地热温度计适用条件不同,综合不同合理的方法以及互相校正是最好的方法。  相似文献   

8.
Abstract The Rehai geothermal field in Tengchong County, Yunnan Province is a significant high- temperature hydrothermal convective system. The geothermal reservoir is composed of granite. Various geothermometers are used to evaluate the reservoir temperature. The most likely temperature of the reservoir as represented by TNa-K-Ca is about 230 °C. The chemical and isotopic compositions of fluids before boiling within the reservoir are estimated. The mixing and dilution of cold and warm waters are discussed. The Rehai geothermal field is a high- temperature (hot) water system with the subsurface boiling zone close to the surface. The reservoir pressure at different depths is calculated. And finally the water-rock equilibration is inferred.  相似文献   

9.
Li  Yasong  Liu  Chunlei  Cao  Shengwei  Miao  Qingzhuang  Dong  Yan  Jiang  Zhenjiao 《Hydrogeology Journal》2021,29(6):2211-2218

Low-to-medium temperature geothermal fluids in the granite regions of southeastern China are an important renewable energy resource, but they are also a source of contamination containing highly toxic elements such as fluoride and arsenic. This study analyzed the origin of the geothermal fluids in a regional-scale hydrogeological unit in the city of Xiamen, China, based on isotope and hydrochemical analyses. The Br/Cl ratios suggested that the inland geothermal fluid is merely recharged by rainwater from the mountain edge, while the coastal geothermal fluid is originally recharged by the seawater and later mixed with rain-derived groundwater. The geothermal water featured high SiO2 and detectable Zn concentrations. The former reflects the significant water–granite interaction along the flow path, and the latter indicates the active hydraulic connection between surface waters, shallow aquifers and deep geothermal fluids. High radon content was detected near the deep conductive fault adjacent to a geothermal well, demonstrating that the fault damage zone acts as a major conduit for upward transport of the deep geothermal fluid. As a result, the fault damage zones developed in the granite are necessary for the formation of geothermal water, which leads to the uneven distribution of geothermal water in the subsurface. High-temperature geothermal water can be found in those regions with fairly sparse fault damage zones. In contrast, in the region with high-density fault activities, the active communication between shallow cool water and deep geothermal fluids can decrease the water temperature.

  相似文献   

10.
山东省东明地热田内蕴藏着丰富的地热资源。通过已有地质资料及近年的勘查项目研究成果,对东明地热田的地热资源的地质背景、热储特征、地球物理化学特征等进行了研究分析,认为东明地热田属于层控型低温地热田,热储层主要为新近纪明化镇组下部、馆陶组、古近纪东营组地层,该区的地温梯度主要受构造控制,断裂导热是形成该地温场的一个重要因素,地下热水水平方向水化学组分变化甚微,具有明显的垂直分带性,地热水水源主要为渗入的溶滤水。  相似文献   

11.
The Hawaii Geothermal Project (HGP) was organized in 1972 to locate and utilize geothermal energy resources in Hawaii. A geophysical program was designed to select a site of high potential for a geothermal resource and to develop an understanding of the thermal processes of a basaltic volcano and its associated rift zones.The well was completed in July 1976 and after subsequent clearing was producing at 5800 kg/hr with a well head pressure of 11 kg/cm2 and a temperature of 190°C (equivalent to 3.5 MW of electrical energy).The discharge fluid was only slightly saline despite the termination of the well 1768 m below sea level. The water was nearly depleted in magnesium but contained high concentrations of silica and sulfide. Geochemical thermometers based on the data of Fournier, Rowe, White, Ellis, and Truesdell are in excellent agreement with the measured downhole temperature of 275°C.Stable and radioactive isotope analyses for 14C, 13C and 13O indicate that 66% of the recharge is from local rainfall with a turnover of at least several hundred years. The remaining discharge is derived from sea water (10%) and hydrothermally altered fluids. Analyses for the gases CO2, He and 3He indicate that the fluids have a deep-seated or magmatic source.  相似文献   

12.
地热资源与开发地热研讨   总被引:2,自引:0,他引:2  
著者以发生学、生态学的观点阐述了地热资源特有的双重性,这是对地热资源评估的基础,指出了热源、热储、热力、蓄层间相依共存的密切关系。对开发地热提出的对策建议是立足资源,面向市场,因地制宜、优质优用,滚动开发,注重综合效益。  相似文献   

13.
地热资源按地质构造及成因的不同可划分为火山型及沉积盆地型两种类型。国内外许多学者对沉积型地热系统的同位素水文地球化学研究较多,而火山型地热系统研究不足,且沉积型和火山型地热流体的同位素水文地球化学对比研究还有待进一步深入。文章以关中盆地腹部沉积型地热系统及腾冲火山地热系统为代表,应用同位素水文地球化学方法对不同类型地热流体的地质构造、地热流体起源及成因、热储开放程度等进行系统对比研究,进而揭示其异同之处,为我国不同类型地热资源的可持续开发利用提供科学依据。关中盆地与腾冲热海地热系统在热储空间、构造条件、热源方面均存在较大差异,前者热储更为封闭,热储层更厚,后者热储通道更为畅通,热源更为丰富;腾冲热海地热系统热储温度高,埋藏更浅,热水循环更快,更易于开发利用。关中盆地与腾冲热海地热系统均存在比较明显的δ18O富集现象,关中盆地地热流体滞留时间更长是δ18O富集的主控因素,腾冲较高的热储温度是δ18O富集的主控因素;关中盆地腹部为沉积-半封闭型、封闭型,腾冲热海地热系统为火山-半封闭型;在漫长的地质历史时期,水岩反应的程度是决定热储流体水化学类型的主控因素。  相似文献   

14.
According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource potential of the thermal water are discussed by using the methods of Langelier-Ludwig Diagram, isotopic hydrology and geochemical thermometric scale. The analysis results indicate that the Weiyuan Geothermal Field is located in the northern fringe of Xining Basin, where the geothermal water, compared with that located in the central area of Xining Basin, is characterized by greater water yield, shallower buried depth of thermal reservoir and easier exploitation. Due to its active exchange with the modern cold water, the thermal water here shows relatively younger age. These findings provide a hydro-geochemical evidence for the exploitation of Weiyuan Geothermal Field.  相似文献   

15.
郭清海 《地质学报》2022,96(5):1767-1773
地热能是亟待加强开发利用的可再生新能源,但地热研究者与从业者需正视与地热系统相关的各类环境问题。本文聚焦地热系统来源有害组分,从其形成机制入手,总结了其类型、存在形态和环境效应,认为地热水回灌或无干扰井下换热均不可能彻底解除地热开发利用的环境和人类健康威胁,且地热水天然排泄所导致的周边环境内水质劣化同样不容忽视。在此基础上,提出水处理是地热成因环境污染防治的重要手段之一,综述了在此领域今后应着力发展的方向。  相似文献   

16.
西藏羊八井地热田水热蚀变的时空演化特征   总被引:3,自引:0,他引:3  
西藏亚东—谷露裂谷中—北段的羊八井地热田是我国著名的高温地热田,研究其水热蚀变的时空演化有助于更好地认识藏南地热的发育特征。通过对羊八井地热田及其水热蚀变岩开展地表调查、显微特征与X衍射分析等工作,总结了其主要蚀变类型特征,划分出黄褐色蚀变中心带、灰白色中强蚀变带、灰白色中等蚀变带和浅灰白色弱蚀变带4个不同的水热蚀变带,并区分出红褐色—黄褐色蚀变期、灰白色蚀变期和淡黄色—灰色蚀变期共3期蚀变。研究结果揭示,羊八井地热田高温地热活动中心一直在北区硫磺沟区域,其水热蚀变活动主要受亚东—谷露裂谷内部的活动断裂构造控制,并与断裂构造活动具同步性;地热水的排泄方式早期为沿北东向断裂构造直接排泄,晚期为经浅层第四系径流后再排泄,由直接排泄向间接排泄转变;中高温地热水的排泄区由北区硫磺沟地区向南区藏布曲迁移。根据研究结果推断,硫磺沟区域的北东向断裂与北西向断裂交汇区可作为羊八井热田北区深部地热勘查的主要方向。  相似文献   

17.
Subsurface reservoir temperatures of two important Mexican geothermal systems (Los Azufres and Las Tres Vírgenes) were estimated by applying all available solute geothermometers for 88 and 56 chemical data measurements of the spring waters and fluids of the deep geothermal wells, respectively. Most of the chemical data for spring water of these two geothermal fields are for HCO3 water, followed by SO4 and Cl types. For the Los Azufres geothermal field (LAGF), the reservoir temperatures estimated by Na-K geothermometers for springs of HCO3 and SO4 waters, and by Na-Li and Li-Mg geothermometers for Cl water, are close to the average bottom-hole temperature (BHT) of the geothermal wells. However, all reservoir temperatures for spring waters from the Las Tres Vírgenes geothermal field (LTVGF) estimated by all solute geothermometers indicated significantly large differences (low temperatures) compared to the BHT. Evaluation of inferred reservoir temperatures for spring waters of the LAGF and LTVGF suggests that not all springs nor all solute geothermometers provide reliable estimation of the reservoir temperatures. Even though chemical equilibrium probably was not achieved in the water–rock system, Na-K geothermometers for HCO3 water (peripheral water mainly of meteoric origin with little geothermal component) and SO4 water (geothermal steam heated) and Na-Li and Li-Mg geothermometers for Cl-rich spring water (fully mature geothermal water) of the LAGF indicated reservoir temperatures close to the BHT. However, in comparison with the geothermometry of spring water of the LAGF and LTVGF, fluid measurements from geothermal wells of these two fields indicated reservoir temperatures in close agreement with their respective BHTs. For the best use of the solute geothermometry for spring water, it is advisable to: (1) chemically classify the springs based on water types; (2) identify and eliminate the discordant outlier observations by considering each water type as a separate sampled population; (3) apply all available solute geothermometers employing a suitable computer program such as SolGeo instead of using some specific, arbitrarily chosen geothermometers; and (4) evaluate the temperatures obtained for each solute geothermometer by considering the subsurface lithology, hydrological conditions, and BHTs or static formation temperatures whenever available.  相似文献   

18.
河南省鹤壁市新区地热流体特征及成因分析   总被引:2,自引:0,他引:2  
地热资源属于一种宝贵矿产资源,它的形成需要特定的地质构造环境。本文在分析鹤壁市新区古近系、奥陶—寒武系热储地热流体化学特征的基础上,分别对其热水进行了医疗热矿水等质量评价。利用水文地球化学方法、同位素分析方法等,对地下热水和二氧化碳气体的成因进行了分析;依据放喷试验和二氧化碳的产状对驱动喷发的机理进行了探讨。从而为合理开发利用地热流体资源提供了地质依据。  相似文献   

19.
Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar–Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth’s surface at about 5.30 Ma. Based on the δ18O–δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.  相似文献   

20.
川藏铁路康定隧址区穿越鲜水河断裂带,属地热异常区,对铁路建设造成一定的热害威胁。采用野外调查、水化学分析和氢氧同位素测试等技术方法,开展了川藏铁路康定隧址区地热水成因研究。结果表明,康定隧址区地热水水化学类型主要为HCO3·Cl—Na和HCO3—Na型,聚集于折多塘、康定和中谷3个热水区。地热水均为未成熟水,热储温度为104~172 ℃,深部初始地热水温度为186~250 ℃,冷水混合比例为0.56~0.81。氢氧同位素显示地热水补给高程为3768~4926 m。在康定隧址区,地热水受到高海拔水源补给,主体断裂构造为导热构造,次级分支断裂和发育节理、裂隙的断层破碎带为导水构造,地热水形成后沿浅部断层破碎带出露形成温泉。FEFLOW数值模拟分析表明研究区100 m深度地温场温度为35.4~95.1 ℃,研究区内三个热水区之间存在低温通道。隧道建设时应重点关注康定热水区的高温水热灾害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号