首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
青藏高原盐湖硼酸盐矿物   总被引:10,自引:0,他引:10  
西藏硼砂早就闻名中外。多年来有关单位对青藏高原盐湖进行调查研究的结果表明,本区盐类矿物的种类多、分布广、储量丰富,以硼酸盐尤为突出。现已发现十余种硼酸盐矿物,其中水碳硼石、章氏硼镁石和多水氯硼钙石是首次发现的新矿物。在昆仑山两侧还发现一种新类型盐湖——硫酸镁亚型硼酸盐盐湖,正在沉积各种水合硼酸镁盐。 我们在进行青藏高原盐卤硼酸盐研究中发现了含硼浓缩盐卤加水稀释成盐这一过程。这为水合硼酸镁盐的形成提供了新的实验解释。  相似文献   

2.
世界盐湖卤水型锂矿特征、分布规律与成矿动力模型   总被引:3,自引:0,他引:3  
卤水锂矿在世界探明的锂矿总资源量中占比达65%,由于其易于开采,成本较低,其锂盐产品占总锂盐产品的75%左右.世界卤水锂矿主要产于现代盐湖,这些盐湖分布于世界三大高原:中国青藏高原、南美西部安第斯高原和北美西部高原,形成了三大盐湖卤水锂成矿区.中国青藏高原盐湖主要包括西藏中北部和柴达木盆地盐湖,卤水锂(LiCl)资源量为2330万t;南美西部安第斯高原盐湖,涵盖玻利维亚、智利和阿根廷盐湖,锂(Li2 O)资源量为2300万t;北美西部高原盐湖卤水锂矿(Li2 O)资源量为550万t.同时,中国华南地区在中生代晚期可能也是高原环境,高原地貌孕育了大量盐湖,并形成了一些富锂卤水矿.这些高原的形成与隆升都起因于板块俯冲及陆陆碰撞:南美安第斯高原和北美西部高原是太平洋板块向美洲板块俯冲-增生造山形成的,中国青藏高原是印度板块向欧亚板块俯冲-陆陆碰撞形成的,而中国华南古高原则可能与古太平洋板块向亚洲大陆俯冲作用有关.板块俯冲及陆陆碰撞作用,一方面形成高原地貌,挡住了来自大洋的水汽,从而导致高原内部降水减少,形成干旱气候,引发强烈蒸发作用;洋壳俯冲至上地幔之后,由于脱水和部分熔融导致其中的氯、钾、锂和溴等挥发分进入岩浆并被带到地壳浅部富集;板块俯冲-碰撞作用形成大量构造盆地,同时,岩浆活动又引起大量温热泉水活动,高温水-岩反应将地壳中大量锂等成矿物质释放出来,汇入盆地并通过蒸发浓缩形成富锂盐湖.上述构造、气候和物源等成矿要素的耦合,最终导致高原盐湖卤水富锂成矿.综合世界卤水锂矿特征与成矿作用,提出盐湖卤水锂成矿动力学模式.  相似文献   

3.
中国盐湖科学技术研究的若干进展与展望   总被引:19,自引:0,他引:19  
我国拥有得天独厚的盐湖资源,分布于北半球盐湖带欧亚盐湖亚带东部,主要分布在现代降水量500mm/a的范围内。本文对中国盐湖科学技术60年来取得的若干进展进行初步梳理。1.在盐湖沉积与古气候、古环境研究方面:提出了各种盐类矿物的古气候转换指标。柴达木西部-塔里木东部氯化物型-硫酸盐型沉积区为我国第四纪以来干旱成盐中心,历经了6次以上的向外干旱(成盐)扩张期;提出青藏高原第四纪晚期存在5次泛湖高湖面;2.在盐湖成矿与成盐成钾理论研究方面:首编青藏高原湖泊水化学分带图(1/250万),揭示了青藏高原盐湖水化学类型由南往北、由碳酸盐-氯化物型分布规律及其相应成盐成矿专属性;发现几个大型陆相钾盐矿床,提出了高山深盆成盐模式、链式多级中浅盐湖成矿模式、多级湖盆深盆成盐模式、砂砾型含钾卤水成矿模式以及"隔代承袭成钾"等新认识,建立和发展了"陆相成钾"理论认识;发现青海大柴旦湖钠硼解石-柱硼镁石矿床、西藏扎仓茶卡柱硼镁石-库水硼镁石矿床、聂尔错库水硼镁石矿床等新类型镁硼酸盐(锂)矿床,进而提出冷冻稀释成硼理论新认识。3.自主研发出的"反浮选冷结晶工艺"生产氯化钾自控系统,使察尔汗盐湖钾盐达到300万吨/年KCl产量,形成了名牌钾肥产品。成功研发了罗布泊120万吨/年硫酸钾成套技术,建成世界最大的硫酸钾生产装置,2015年产量达160万吨,以上为我国钾肥生产作出了重大贡献。在自主研发的"冬储卤-冷冻-日晒-分离-盐梯度太阳池积热沉锂"创新技术支撑下,在西藏高原海拔4421米的扎布耶盐湖建成了世界海拔最高的锂盐产业,也是我国首条年产5000吨碳酸锂的盐湖提锂基地。4.根据盐水域发育大面积杜氏藻等嗜盐菌藻、盐沼带和盐碱地繁衍多种盐生植物的盐境生态特点,提出"盐湖农业"("盐土农业")农业新概念,发展盐境绿色产业提供新的理念和技术支持。最后,为今后盐类科学发展方向,提出了深绿科技与产业研发方向,随着盐类科学技术的发展,将会促进新的边缘交叉学科盐类学(Salinology)的发展和日臻完善。  相似文献   

4.
青藏高原盐湖水化学及其矿物组合特征   总被引:23,自引:1,他引:22  
郑绵平  刘喜方 《地质学报》2010,84(11):1585-1600
青藏高原湖泊的矿化度与其湖泊演化所处的自然环境,特别是与气候条件关系密切,根据取得盐湖数量和卫片解译,本区湖泊矿化度在空间上变化的总趋势是由北、西北向南、东南趋向下降,大体上与现代高原年干燥度(年蒸发量/年降水量)呈同步变化。高原盐湖的pH值既与水化学类型有关,又与湖水矿化度有关,即由碳酸盐型→硫酸钠亚型→硫酸镁亚型→氧化物型,其pH值趋于下降,而湖泊的pH值与矿化度大体呈反相关。根据库尔纳可夫—瓦良什科分类法及作者对碳酸盐型的细分,对青藏高原盐湖水化学进行了全面细致划分,从而取得了清晰的规律性认识:本区盐湖水化学具有南北分带,东西分区的特点。不同的盐湖水化学类型,具有不同的专属性,碳酸盐型代表性成矿组合为硼砂(三方硼砂)或硼砂—扎布耶石,以及碱—芒硝组合;硫酸钠亚型代表性成矿组合为芒硝(无水芒硝)—石盐以及镁硼酸盐(库水硼镁石、柱硼镁石等)—钠硼解石—芒硝;硫酸镁亚型代表性成矿组合为硫酸镁盐(泻利盐、白钠镁矾)—石盐、镁硼酸盐—芒硝、芒硝—软钾镁矾—石盐以及大量石膏;氯化物型代表性成矿组合则为光卤石—水氯镁石—石盐、光卤石—石盐,个别盐湖共生南极石。由此可见,青藏高原各类型盐湖矿物组合基本上具有冷相组合特征,芒硝及与其共生的冷相盐类矿物,可成为研究古气候变化的重要标志物。目前已检出青藏高原盐湖水含有59种元素,其中B与Li、Cs、K、Rb有密切共生关系,其含量随湖水矿化度增长大致呈正相关;B、Li、Cs、K、Rb最高正异常落在羌南碳酸盐型带(Ⅰ2)西段—昂拉陵湖区为中心地区;并与本区中新世火山沉积岩系和地热水B、Li、Cs、Rb等高值区并行不悖。以上有力证明B、Li、Cs等特殊元素物质与深部来源有关。据近期大量地球物理和火山岩岩石地球化学研究,其成因与印度—欧亚陆陆碰撞引起的重熔岩浆作用有密切成因联系。南美科迪勒拉高原硼锂(铯)盐湖即生成于活动大陆边缘,两者均说明全球特定的活动构造带是造成天然水B、Li、Cs(K、Rb)高丰度及其成矿作用的主因。  相似文献   

5.
通常认为库水硼镁石难以形成,柱硼镁石在室温附近难以得到。通过从浓缩盐湖卤水中得到的复盐2MgO·2B2O3·MgCl2·14H2O在H3BO3或MgCl2水溶液中的溶解相转化实验,在室温附近获得了这两种镁硼酸盐。在此实验基础上,推测了青藏高原盐湖中库水硼镁石和柱硼镁石矿物可能的形成过程及反应机制,并指出复盐相转化成盐为青藏高原盐湖所有镁硼酸盐沉积矿物的形成提供了一种实验解释。  相似文献   

6.
青藏高原湖泊遥感信息提取及湖面动态变化趋势研究   总被引:5,自引:0,他引:5  
闫立娟  齐文 《地球学报》2012,33(1):65-74
青藏高原湖泊星罗棋布,是我国盐湖主要分布区.本文以RS和GIS技术为基础,从Landsat的MSS、TM、ETM三期遥感影像中,提取了青藏高原的所有湖泊信息,建立了我国盐湖空间数据库.用ArcGIS对盐湖空间数据进行统计和空间分析,从时间和空间上分析青藏高原从70年代到2000年左右湖泊湖面动态变化情况.同时,在青海和...  相似文献   

7.
徐昶 《地质科学》1985,(1):87-96
青藏高原是我国盐湖分布的主要地区之一。对该地区盐湖沉积物中的粘土矿物,前人未进行过系统研究。近年来,作者对柴达木盆地盐湖中的粘土矿物做过一些工作。本文报道了该区49个湖区约200个样品的粘土有关资料,其中包括藏北某些半咸水湖和盐湖周围的某些土壤和泥样的有关资料。文中对含粘土矿物的碎屑沉积物的岩性、粘土矿物类型、粘土化学组分以及粘土资料在盐湖形成演化过程中的地质意义等方面进行了初步讨论和总结。  相似文献   

8.
【研究目的】近年来,新能源发展势头强劲,锂电池需求旺盛,锂矿资源争夺激烈。相比于目前主要开发的硬岩型锂矿,盐湖卤水型锂矿有着“量大、绿色、经济”的优势,随着卤水提锂工艺的不断进步,盐湖型锂矿的产能将进一步得到释放;中国是盐湖卤水型锂矿的主要分布国家之一,占世界总资源量的比例排在第五位。在世界锂资源争夺战愈演愈烈的情况下,总结盐湖卤水型锂矿的分布特征、水化学类型分类和矿物组合,估算潜在资源量以及提出评价盐湖卤水型锂矿的方法,对合理安排勘查和开发投入,以及规划国家新能源资源具有重要意义。【研究方法】搜集已公开发表或出版的盐湖卤水型锂矿资料,从分布、成矿地质条件方面分析基本特征,并对潜在资源量估算以及开发利用潜力评价进行评述。【研究结果】全球盐湖卤水型锂矿资源丰富,但分布不均,主要集中在南美安第斯高原、美国西部高原和中国青藏高原3个盐湖聚集区,其形成主要受大地构造背景、断层活动断裂以及气候海拔等条件控制。中国青藏高原盐湖卤水型锂矿资源不同于另两大盐湖聚集区的是,其构造背景属于陆陆碰撞,而非洋壳俯冲。由南到北还可进一步分为西藏和青海两个盐湖地区,青海地区镁锂比较高,不适用于传统的蒸发沉淀法,新...  相似文献   

9.
西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束   总被引:13,自引:0,他引:13  
拟以岩石学和地球化学的研究为基础, 结合地球物理与构造地质学的研究成果, 从一个侧面探讨青藏高原岩石圈、特别是印度-亚洲主碰撞带岩石圈结构、组成及今后进一步的研究方向.印度-亚洲主碰撞带具有青藏高原最厚的地壳, 由初生地壳及再循环地壳两类不同性质的地壳构成; 青藏巨厚地壳是由于构造增厚及地幔物质注入(通过岩浆作用) 增厚两种机制形成的.碰撞以来藏南地壳加厚主要发生在约50~25Ma期间.青藏岩石圈地幔在地球化学和岩石学上是不均一的, 至少存在3种地球化学端元: (1) 新特提斯大洋岩石圈端元; (2) 印度陆下岩石圈端元; (3) 新特提斯闭合前青藏原有的岩石圈端元.在青藏高原还发现了一批壳幔深源岩石包体及高压-超高压矿物, 对于认识青藏深部有重要的意义.可以识别出青藏高原现今存在3种岩石圈结构类型: 第1种, 增厚的岩石圈(帕米尔型); 第2种, 减薄的岩石圈(冈底斯型); 第3种, 加厚-减薄-再加厚的岩石圈(羌塘型).这3类岩石圈是否在时间上具有先后顺序, 尚无明确的证据, 需要在今后加以注意.研究表明, 沿冈底斯带后碰撞钾质-超钾质火山活动, 可能与新特提斯洋俯冲板片在后碰撞阶段的断离及印度大陆岩石圈向青藏的持续俯冲作用有关, 但西段、中段与东段的动力学机制不相同.在青藏高原北部地区(羌塘、可可西里等地区), 后碰撞钾质-超钾质火山活动, 可能与波状外向扩展式的软流圈上隆引起的减压熔融有关.在高原北缘西昆仑、玉门等地区, 其形成机制可能为大规模走滑断层引起的减压熔融.青藏高原后碰撞火成活动具有明显而有规律的时空迁移.同碰撞的林子宗火山活动在65Ma左右始于冈底斯南部, 标志印度-亚洲大陆碰撞的开始.于45Ma左右火山活动向北迁移到羌塘-“三江”北段, 开始了后碰撞火山活动; 然后自内向外迁移, 即北向可可西里、南向冈底斯(在冈底斯内部又自西向东)、东向西秦岭迁移; 最后(6Ma以来), 再分别向高原的西北、东北、东南三隅迁移.结合已有地球物理资料, 一种可能的解释是它可能暗示由印度和亚洲大陆板块碰撞所诱发的深部物质(如中-下地壳、软流圈地幔物质) 流动.   相似文献   

10.
许多金属与非金属矿床在成因上与海底或陆地火山活动、火山成矿作用有关,有些还是目前世界上最大的或绝无仅有的矿床.因此,中外地质学者对火山活动、火山成矿作用引起了普遍的关注和重视.但传统地质理论很少注意火山活动、火山成矿作用的大地构造类型及其特征标志,往往把地槽型海底火山活动、火山成矿作用与中生代以来地洼型的陆地火山活动、火山成矿作用相混;进行不恰当的类比,使评价发生错误.笔者认为,火山活动受不同类型地壳构造运动影响和制约,火山喷发只是火山活动表现于地壳外部的一个发展阶段;在其发展进程中,  相似文献   

11.
柴达木盆地小柴旦湖硼酸盐的形成   总被引:6,自引:0,他引:6  
孙大鹏 《矿物岩石》1991,11(4):57-65
本文探讨了小柴旦湖第四纪沉积物中的钠硼解石和柱硼镁石的特征和成因,并进行了盐湖卤水的模拟实验,认为硼酸盐矿物在卤水浓缩的早期到晚期均可形成。  相似文献   

12.
Li  Bin-Kai  He  Mao-Yong  Ma  Hai-Zhou  Cheng  Huai-De  Ji  Lian-Min 《中国地球化学学报》2022,41(5):731-740

Boron is an essential, widely used, micronutrient element and is abundant in salt lakes on the Qinghai-Tibet Plateau. The origin and distribution of boron brine deposits on the Qinghai-Tibet Plateau is an important foundation for B resource formation, evolution, and enrichment, which have long been the subject of debate. The boron isotope system is a sensitive geochemical tracer, making it useful for effectively and precisely tracking a wide range of geological processes and sources. This study investigates the major cations, [B], and δ11B values of samples (lake brine, river waters, and cold spring water) from the Bangor Co Lake which is a typical salt lake rich in boron in Tibet, China. There are magnitude-scale differences in [B] among different sample types: river samples < cold spring water < < brine lakes. [B] values vary from 0.73 to ~ 1113 mg/L. Similar to [B], the δ11B values of the samples exhibit magnitude-scale variations as [B], ranging from − 7.35‰ to + 7.66‰. There are also magnitude-scale differences in δ11B among different sample types. The δ11B values of cold spring water are relatively low, and the values range from − 1.26‰ to -7.75‰. However, the river water samples and saline lakes have higher values, from 0.38‰ to 4.62‰, and the δ11B values of river water samples are basically in the distribution range of those of Bangor Co Lake. This indicates that the sources of boron in Bangor Co Lake are mainly the recharge water with higher δ11B values and spring water with lower δ11B values, and the boron sources and the uneven mixing of lake water are two reasons that account for the large change in the δ11B value of Bangor Co Lake.

  相似文献   

13.
郭佩  李长志 《古地理学报》2022,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

14.
郭佩  李长志 《古地理学报》1999,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

15.
Progress and Prospects of Salt Lake Research in China   总被引:3,自引:0,他引:3  
China has unique salt lake resources, and they are distributed in the east of Eurasian salt lake subzone of the Northern Hemisphere Salt Lake Zone, mainly concentrated in the regions with modern mean annual precipitation lower than 500 mm. This paper preliminarily reviews the progress made in salt lake research in China for the past 60 years. In the research of Paleoclimate and paleoenvironment from salt lake sediments, a series of salts have been proposed to be indicators of paleoclimate, and have been well accepted by scholars. The chloride-sulfate depositional regions of the west Qaidam and the east Tarim have been revealed to be the drought center of China since the Quaternary, and more than 6 spreading stages of arid climate(salt forming) have been identified. Five pan-lake periods with highstands have been proved to exist during the late Quaternary on the Tibetan Plateau. In mineral resource prospecting and theories of the forming of salt deposits: the atlas(1:2500000) of hydrochemical zoning of salt lakes on the Tibetan Plateau has been compiled for the first time, revealing the zonal distribution and transition from carbonate type to chloride type from south to north and presenting corresponding mineral assemblages for different type of salt lakes; several large continental salt deposits have been discovered and the theory of continental potash deposition has been developed, including the salt deposition in deep basins surrounded by high mountains, the mineral deposition from multistage evolution through chains of moderate or shallow lakes with multilevels, the origin of potassium rich brines in gravel layers, and the forming of potassium deposits through the inheriting from ancient salt deposits, thus establishing the framework of "Continental Potash Deposition Theory"; several new types of Mg-borate deposits have been discovered, including the ulexite and pinnoite bed in Da Qaidam Lake, Qinghai, the pinnoite and kurnakovite bed in Chagcam Caka, Tibet, the kurnakovite bed in Lake Nyer, and the corresponding model of borate deposition from the cooling and dissolution of boron rich brines was proposed based on principles of geology, physics and chemistry. The anti-floatation-cold crystallization method developed independently has improved the capacity of KCl production to 3 million tons per year for the Qarham, serving the famous brand of potash fertilizer products. One 1.2 million ton K-sulfate production line, the biggest in the world, has been built in Lop Nor, and K-sulfate of about 1.6 million tons was produced in 2015. Supported by the new technology, i.e. brine preparation in winter-cooling-solarization-isolation-lithium deposition from salt gradient solar pond" the highest lithium production base at Zabuye Lake(4421 m), Tibet, has been established, which is the first lithium production base in China that reaches the year production of 5000 tons of lithium carbonate. The concept of Salt lake agriculture(Salt land agriculture) has been established based on the mass growth of Dunaliella and other bacillus-algae and the occurrence of various halophytes in saltmarsh and salt saline-alkali lands, finding a new way to increase arable lands and develop related green industry in salt rich environments. Finally this paper presents some new thoughts for the further research and development on salt science, and the further progress in salt science and technology will facilitate the maturing of the interdisciplinary science "Salinology".  相似文献   

16.
腾格里沙漠122个盐湖分为石盐、石盐-芒硝、石盐-白钠镁矾及芒硝(石膏)4种类型。盐湖含盐系厚度一般4~9m,总体呈现下部为含盐碎屑沉积,上部以盐类沉积为主,构成储卤层,卤水赋存其中,由湖岸至湖心储卤层厚度增长。含卤层理渐小,卤水含KCl渐高。盐湖中矿物主要为碳酸盐矿物,以芒硝、石膏为主的硫酸盐矿物、石盐以及粘土矿物。盐湖卤水以晶间卤水为主。许多卤水含K+大于2g/L。K+含量最高的红盐池,平均含量达19.14g/L。对钾矿而言,在盐湖分布相对集中地区,有一定的综合开发利用前景。  相似文献   

17.
The authors have carried out scientific investigations of salt lakes on the Qinghai-Tibet Plateau since 1956 and collected 550 hydrochemical data from various types of salt lakes. On that basis, combined with the tectonic characteristics of the plateau, the hydrochemical characteristics of the salt lakes of the plateau are discussed. The salinity of the lakes of the plateau is closely related to the natural environment of lake evolution, especially the climatic conditions. According to the available data and interpretation of satellite images, the salinity of the lakes of the plateau has a general trend of decreasing from north and northwest to south and southeast, broadly showing synchronous variations with the annual precipitation and aridity (annual evaporation/annual precipitation) of the modern plateau. The pH values of the plateau salt lakes are related to both hydrochemical types and salinities of the lake waters, i.e., the pH values tend to decrease from the carbonate type → sodium sulfate subtype → magnesium sulfate subtype → chloride type; on the other hand, a negative correlation is observed between the pH and salinities of the lakes. Geoscientists and biological limnologists generally use main ions in salt lakes as the basis for the hydrochemical classification of salt lakes. The common ions in salt lakes are Ca2+, Mg2+, Na+, K+, Cl? SO4 2?, CO3 2?, and HCO3 ?. In this paper, the Kurnakov-Valyashko classification is used to divide the salt lakes into the chloride type, magnesium sulfate subtype, sodium sulfate subtype and carbonate type, and then according to different total alkalinities (K C = Na2CO3 + NaHCO3/total salt × 100%) and different saline mineral assemblages, the carbonate type is further divided into three subtypes, namely, strong carbonate subtype, moderate carbonate subtype and weak carbonate subtypes. According to the aforesaid hydrochemical classifications, a complete and meticulous hydrochemical classification of the salt lakes of the plateau has been made and then a clear understanding of the characteristics of N–S hydrochemical zoning and E-W hydrochemical differentiation has been obtained. The plateau is divided into four zones and one area. There is a genetic association between certain saline minerals and specific salt lake hydrochemical types: the representative mineral assemblages of the carbonate type of salt lake is borax (tincalconite) and borax-zabuyelite (L2CO3) and alkali carbonate-mirabilite; the representative mineral assemblages of the sodium sulfate subtype are mirabilite (thenardite)-halite and magnesium borate (kurnakovite, inderite etc.)-ulexite-mirabilite; the representative mineral assemblages of the magnesium sulfate subtype are magnesium sulfate (epsomite, bloedite)-halite, magnesium borate-mirabilite, and mirabilite-schoenite-halite, as well as large amount of gypsum; The representative mineral assemblages of the chloride type are carnallite-bischofite-halite and carnallite-halite, with antarcticite in a few individual salt lakes. The above-mentioned salt lake mineral assemblages of various types on the plateau have features of cold-phase assemblages. Mirabilite and its associated cold-phase saline minerals are important indicators for the study of paleoclimate changes of the plateau. A total of 59 elements have been detected in lake waters of the plateau now, of which the concentrations of Na, K, Mg, Ca, and Cl, and SO4 2?, CO3 2?, and HCO3 ? ions are highest, but, compared with the hydrochemical compositions of other salt lake regions, the plateau salt lakes, especially those in the southern Qiangtang carbonate type subzone (I2), contain high concentrations of Li, B, K, Cs, and Rb, and there are also As, U, Th, Br, Sr, and Nd positive anomalies in some lakes. In the plateau lake waters, B is intimately associated with Li, Cs, K and Rb and its concentration shows a general positive correlation with increasing salinity of the lake waters. The highest positive anomalies of B, Li, Cs, and K center on the Ngangla Ringco Lake area in the western segment of the southern Qiangtang carbonate type subzone (I2) and coincide with Miocene volcanic-sedimentary rocks and high-value areas of B, Li, and Cs of the plateau. This strongly demonstrates that special elements such as B, Li, and Cs on the plateau were related to deep sources. Based on recent voluminous geophysical study and geochemical study of volcanic rocks, their origin had close genetic relation to anatectic magmatism resulting from India–Eurasia continent–continent collision, and B–Li (-Ce) salt lakes in the Cordillera Plateau of South America just originated on active continental margins, both of which indicate that global specific tectonically active belts are the main cause for the high abundances of B, Li, and Cs (K and Rb) in natural water and mineralization of these elements.  相似文献   

18.
西藏扎布耶碳酸盐型盐湖卤水相化学研究   总被引:12,自引:0,他引:12  
中国盐湖资源丰富,且水化学类型齐全。西藏扎布耶盐湖位于西藏高原腹地,该湖卤水水化学类型为碳酸盐型,已处于盐湖演化晚期,是一个固液共存的盐湖矿床,具有很好的工业开发价值。笔者分别在15℃、25℃下对该卤水进行了等温蒸发实验,研究了在此两个温度下卤水中各元素富集行为和盐类矿物析出规律。并通过讨论其与国内外碳酸盐型和硫酸盐型锂盐湖的卤水蒸发路径和矿物析出异同,指出扎布耶盐湖具有其独特的卤水蒸发析盐路径。在本实验中低温有利于卤水中锂的富集,而高温有利于硼的富集,碳酸锂和钾盐交叉析出,低温时钾的矿物主要为钾石盐,高温时主要为钾芒硝,高温有利于获得高品位的碳酸锂混盐。  相似文献   

19.
《China Geology》2018,1(1):72-83
With the technological development of exploitation and separation, the primary sources of lithium have gradually changed from ore to brine, which has become the main raw material, accounting for more than 80% of the total production. Resources of lithium-bearing brine are abundant in China. This paper has summarized the spatial and temporal distribution, characteristics, and formation mechanism of the lithium-rich brine in China, aiming to provide a comprehensive set of guidelines for future lithium exploitation from brines. Lithium-rich brines usually exist in modern saline lakes and deep underground sedimentary rocks as subsurface brines. The metallogenic epoch of China’s lithium-rich brine spans from the Triassic to the Quaternary, and these brines exhibit obvious regional distribution characteristics. Modern lithium-rich saline lakes are predominately located in the Qinghai-Tibet Plateau. In comparison, the subsurface lithium-rich brines are mainly distributed in the sedimentary basins of Sichuan, Hubei, Jiangxi provinces and so on in south Block of China, and some are in the western part of the Qaidam Basin in Qinghai province in northwestern China. Lithium-rich saline lakes are belonging to chloride-enriched, sulfate-enriched, and carbonate-enriched, while the deep lithium-rich brines are mainly chloride-enriched in classification. On the whole, the value of Mg/Li in deep brine is generally lower than that of brine in saline lakes. The genesis of lithium-rich brines in China is not uniform, generally there are two processes, which are respectively suitable for salt lakes and deep brine.  相似文献   

20.
The K?rka borate deposit was deposited in a Miocene lacustrine basin which is closely associated with volcanic activity which lasted from Paleogene to the beginning of Quaternary. Borate mineralization alternates with claystone, mudstone, tuff and fine-layered limestone and mostly shows a lenticular structure. The mineral paragenesis is composed of borax, tincalconite, ulexite, kurnakovite, probertite, tunellite, colemanite, dolomite, smectite group minerals, illite and some firstly reported minerals for the K?rka deposit including hydrochloroborite, brianroulstonite, hilgardite-4M and searlesite minerals. In comparison to average values of earth crust, concentrations of Cs, Sr, Li, As and Se were significantly enriched with respective rates of 21, 15, 14, 3 and 188 folds. Regarding KY, KS1 and KS2 locations, there are differences in both element abundances and their geochemical tendencies which are attributed to variations in discharge regime and physico-chemical conditions of the depositional environment. Independent behaviour of B2O3 might indicate that boron is not associated with clays and carbonates and, therefore, most part of boron must be derived from volcanic activity (hydrothermal solutions, gases). REE data indicate that the K?rka borate deposit was formed in a sedimentary environment where highly alkaline (high pH) hydrothermal solutions also took part in borate precipitation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号