首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究武汉市灰霾期间亚微米级细粒子(PM1.0)中水溶性离子特征,于2012年9月10日至10月30日期间,利用KS-303采样器,在武汉市郊区进行PM1.0常规/灰霾采样。使用离子色谱分析仪对采集的13个样品的10种水溶性离子(F–、Cl–、NO–3、NO–2、SO2–4、Na+、NH+4、K+、Mg2+和Ca2+)进行分析。结果显示,灰霾期PM1.0平均浓度101μg/m3,比非灰霾期高出81%左右;总水溶性离子(TWSI)平均浓度49.5μg/m3,比非灰霾期高出61%左右;SO2–4在灰霾期与非灰霾期浓度均最高,分别达到22.9μg/m3和14.8μg/m3,其次是NO–3和NH+4,灰霾期间K+和Cl–百分含量有较明显升高;秋季PM1.0呈酸性且酸性强弱与PM1.0浓度有很好的正相关性;PM1.0中水溶性离子主要来自人为源,建筑扬尘和风沙尘也对其有一定贡献。  相似文献   

2.
北京市大气可吸入颗粒物的化学成分和来源   总被引:3,自引:0,他引:3  
2007年3月至2008年5月,在北京市成府路东口设立采样点,共采集监测周期为一周的PM2.5(直径小于2.5μm的大气可吸入颗粒物)样品56个,用HR-ICP-MS方法测量了15种元素的含量,并在此基础上应用主因子分析法对PM2.5中这些元素的来源进行探讨。同时,在2008年奥运会和残奥会期间开展了24h时间间隔的密集采样,特别分析了机动车限行期间细颗粒污染物的浓度特征。结果表明,2007年春季至2008年春季期间北京市大气PM2.5平均浓度为72.9μg/m3,超过美国环保局(USEPA)制定的PM2.5年平均浓度限值15μg/m3的近5倍。机动车限行期间北京成府路东口采样点大气PM2.5的平均浓度为40.7μg/m3。通过因子分析方法确定北京PM2.5的3种可能来源:①交通排放、工业排放和燃煤,特征元素为Cu、Zn、As、Sn、Sb、Cd、Pb;②本地扬尘和远源沙尘细颗粒;③可能与成土母岩风化有关的土壤颗粒的再悬浮和/或迁移,其方差贡献率分别为41.2%、31.4%和12.2%。  相似文献   

3.
使用大流量采样器于2013年5月至2014年4月期间采集了上海宝山的PM2.5样品,分析了其中水溶性离子(Cl–、2NO?、3NO?、4SO??、Na+、4NH?、K+、Ca2+、Mg2+)和水溶性总氮(WSTN)的浓度,探讨了水溶性有机氮(WSON)的浓度水平、季节分布及其来源特征。结果表明,上海大气PM2.5中WSON的平均浓度为1.29μg/m3,占WSTN的18%。WSON的浓度冬、春季较高,夏、秋季浓度较低,而WSON对WSTN的贡献夏季最大,秋季次之,冬季最小。主成分分析结果表明,上海PM2.5中的WSON主要来源于人为来源污染物的二次转化。潜在源分析(PSCF)的计算结果表明,夏季和冬季时上海PM2.5中的WSON主要来自浙江、安徽等地陆源污染物的输送以及上海本地的污染排放;春季和秋季时华北地区陆源污染物经由黄海的污染输送对上海PM2.5中的WSON有显著影响。  相似文献   

4.
济宁市是位于华北平原大气污染传输通道上的工业城市,为研究其秋、冬季细颗粒物(PM2.5)的污染特征,在市区的3个站点进行了PM2.5的同步滤膜采样。采样期为2018年10月15日至2019年1月31日,涵盖非采暖期和采暖期(自2019年11月15日始),共270个小流量滤膜样品。研究结果表明,济宁市秋、冬季PM2.5平均质量浓度为(98.9±48.8)μg/m3,采暖期PM2.5质量浓度(107.1±52.8)μg/m3显著高于非采暖期(77.4±27.8)μg/m3。PM2.5的化学组成以二次无机气溶胶、有机碳和元素碳为主,占比分别为52.4%、10.9%和7.5%。S、Cl、K、Ca、Fe和Si元素平均质量浓度之和占元素总平均质量浓度的78.8%,是PM2.5中的主要元素。采暖期PM2.5的主要化学组分质量浓度显著高于非采暖期。二次有机碳是有机碳的重要来源,占比78.9%。PM2.5中Zn和Pb的富集因子较高,说明燃煤及相关工业对PM2.5中重金属的贡献较为显著,ρ(NO3?)/ρ(SO42?)比值分析表明,济宁市整体受流动源影响较大。本研究可为查明华北平原典型工业城市的PM2.5污染来源成因提供依据。  相似文献   

5.
北京市PM_(2.5)中主要重金属元素污染特征及季节变化分析   总被引:3,自引:0,他引:3  
利用2005年4月18日—2008年9月27日北京市中国地质大学(东门)采样点的PM2.5质量浓度变化与重金属Cd、Pb、As、Cu及Zn等污染特征,结合最新发布的《环境空气质量标准》(GB3095—2012),初步分析了近4年时间里北京市单点PM2.5的污染水平及主要重金属污染元素的变化特征,得出了一些有意义的认识。2005年春季—2008年春季期间PM2.5质量浓度为13.1~171μg/m3之间变化,平均浓度为65.6μg/m3,超过最新环境空气质量标准制定的PM2.5年平均浓度限值35μg/m3,北京市PM2.5污染形势依然严峻。奥运会及残奥会期间PM2.5的24 h质量浓度平均值为40.7μg/m3,没有超标。北京市PM2.5中的重金属元素含量及富集特征随着不同年份不同季节差别较大,典型的城市污染元素As在冬季质量浓度最高。对比环境空气质量标准的参考浓度限值发现,As元素的质量浓度在研究期间的年均值均超过了年平均浓度参考限值0.006μg/m3。化学分析结果显示人为污染是PM2.5中Cu、Cd、Pb、Zn、As重金属污染的主要来源,其中As污染需要引起足够重视。研究结果对于北京市大气污染防治具有一定的借鉴意义。  相似文献   

6.
2008年8月和9月,北京市成功举办了第29届奥运会和第13届残奥会,对这段时间在北京市区(中国矿业大学校园综合楼五层,距奥运村3 km)采集的大气颗粒物的质量浓度和微观形貌类型进行了研究。结果表明:奥运会期间,北京市区大气PM10和PM2.5的日均质量浓度分别小于国家PM10二级标准(150μg/m3)和美国EPA的PM2.5二级标准(65μg/m3),12 h的质量浓度范围分别为7.64~81.63μg/m3和1.91~54.59μg/m3;残奥会期间,12 h的PM10质量浓度范围为33.83~106.36μg/m3,没有超标,PM2.5质量浓度变化范围为15.29~88.30μg/m3,其中出现了3 d超标天,分别为9月6日、7日和14日;从奥运期间PM2.5/PM10的比值(0.26~0.86,大部分值大于0.5)可以看出,奥运期间北京大气颗粒物以细粒子为主。与往年相比,颗粒物质量浓度出现大幅下降趋势。场发射扫描电镜观察显示,奥运会和残奥会期间样品的微观形貌类型主要有球形颗粒、烟尘集合体、不规则矿物和未知颗粒,其数量-粒径分布主要呈单峰分布,峰值均在0.1~0.2μm范围,其中球形颗粒明显占多数。各种分析数据均显示,残奥会期间样品比奥运会期间样品污染要严重。  相似文献   

7.
采用混合溶剂提取、N,O-双(三甲硅醚)-三氟乙酰胺(BSTFA)衍生化预处理和GC/MS分析技术,对四川攀枝花苏铁国家自然保护区PM2.5中的大气二次有机气溶胶进行了定量检测,探讨了研究区域内气溶胶中异戊二烯、α-/β-蒎烯光氧化产物、β-石竹酸及小分子羧酸和的浓度水平与变化规律,并讨论了有机物占有机碳(OC)的比值。结果表明,24 h PM2.5中,异戊二烯光氧化产物、α-/β-蒎烯光氧化产物和β-石竹酸的平均浓度分别为51.2、16.1和1.7 ng/m3;苹果酸和2-羟基戊二酸的平均浓度分别为12.4 ng/m3和4.9 ng/m3。OC和元素碳(EC)的平均浓度分别为20.3μg/m3和5.9μg/m3。异戊二烯氧化产物、α-/β-蒎烯氧化产物及β-石竹烯氧化产物对OC的贡献率分别为1.63%、0.34%和0.36%。  相似文献   

8.
苏志华  韩会庆  陈波 《中国岩溶》2020,39(3):442-452
选取贵阳市10个空气质量监测站发布的PM2.5、PM10、SO2、NO2、CO和O3实时浓度数据,通过时间序列分析法和插值法研究贵阳市大气污染物的时空变化和复合污染特征。结果表明:(1)贵阳市2014-2018年主要污染物PM2.5和PM10的年平均浓度逐渐下降,光化学污染物O3年平均浓度有所增加,空气质量逐渐转好,环境治理取得明显效果;(2)2018-2019自然年PM2.5、PM10、NO2和O3在春季污染最严重,SO2和CO在冬季污染最严重,反映出污染源、阶段性燃料燃烧和二次离子生成等因素对不同污染物的影响不同;(3)PM2.5和PM10日变化特征为“午峰晚峰”型,峰值发生的时间因季节而异,主要由不同季节人类作息的起止时间不同所致,O3日变化为单峰型,夜间O3浓度较低,从早晨8:00点开始随着太阳辐射的增大和温度的升高,在15:00-16:00点左右达到峰值;(4)PM2.5的空间分布呈现出部分郊区和工业区较高,市中心居民区较低的特征,指示城市建设向郊区推进。O3浓度呈现出市区低、郊区高的空间分布特征,反映郊区植被覆盖好,释放的天然源VOCs促进了O3生成;(5)主要污染物O3与颗粒物PM2.5和PM10在春季造成的复合污染最为严重,在夏季O3与PM10造成一定程度的复合污染,在秋冬季O3浓度最低,O3与颗粒物不产生复合污染;一天之内同一时刻O3与颗粒物不会产生叠加从而造成复合污染。   相似文献   

9.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是广泛存在于大气中的一类毒害有机污染物.本研究采集了2018年冬、夏两季珠江三角洲9个地级市的气态和颗粒态(PM2.5)样品,分析了16种美国国家环境保护局优先控制PAHs的浓度水平和时空变化,并结合PM2.5相中的有机碳(OC)、元素碳(EC)和左旋葡聚糖浓度,使用正定矩阵因子分解(PMF)模型对PAHs进行了来源解析.∑16 PAHs的气相浓度范围为7.08~284.08 ng/m3,PM2.5相浓度范围为0.30~17.00 ng/m3,两相总浓度(37.48±41.53)ng/m3.季节特征上,∑16 PAHs气相浓度为夏高冬低,PM2.5相浓度则呈现冬高夏低,总∑16 PAHs浓度呈夏高冬低.比值法和PMF源解析结果发现,珠江三角洲9个典型城市大气的PAHs主要来自生物质燃烧(57%)、煤炭燃烧(30%)和机动车尾气排放(13%).城市周边生物质燃烧引致的PAHs污染仍需重视.健康风险评价表明,珠江三角洲大气PAHs致癌等效浓度处于较低水平(0.30~1.89 ng/m3),主要由苯并[a]芘贡献(>45%),建议重点关注.  相似文献   

10.
为探究香港冬季气溶胶消光特征以及细颗粒物(PM2.5)的化学组分对消光系数的贡献,本次研究利用2013年1月在香港科技大学站点测定的高时间分辨率大气气溶胶消光系数以及PM2.5化学组分的观测数据重建本地化消光系数与颗粒物化学组分浓度的经验关系式——IMPROVE公式.结果表明,观测期间PM2.5质量浓度与散射系数的日均值分别为(43.31±16.80)μg/m3和(191.57±85.34)Mm?1,散射系数与PM2.5质量浓度的相关系数R2达到0.90,对其贡献达到85.81%.散射系数在高污染和低污染阶段均是夜间高于白天,吸收系数主要在低污染阶段表现出夜间高于白天.分别对整个观测期间高污染和低污染阶段重建IMPROVE公式,发现1月的硫酸盐、硝酸盐、海盐和有机物的质量散射效率分别为2.02 m2/g、2.41 m2/g、0.41 m2/g和5.07 m2/g,元素碳和NO2的质量吸收效率分别为15.97 m2/g和0.79 m2/g,而高污染阶段,硝酸盐的质量散射效率(2.51 m2/g)相比于低污染阶段(2.03 m2/g)有明显提高.观测期间,硫酸盐对散射系数的贡献最高((54.34±10.49)%),其次是有机物((27.59±8.04)%),硝酸盐((17.54±6.86)%)和海盐((0.53±0.43)%).硫酸盐和有机物分别在夜间和白天的贡献较高,硝酸盐在高污染阶段夜间的贡献增加可能与高污染阶段夜间相对湿度的增加以及质量散射效率的增长有关.元素碳在高污染阶段对吸收系数的贡献超过90%,而NO2气体在低污染阶段对吸收系数的贡献达到22.11%.  相似文献   

11.
近几年,PM2.5浓度上升导致灰霾事件频繁发生,已经引起了广泛的关注。碳组分是PM2.5中的重要组分,被认为是灰霾形成和转化的重要因素,因此,研究PM2.5中含碳组分的来源及其化学过程具有重要的意义。本研究于2016年12月至2017年8月期间在南昌地区共采集105个PM2.5样品,分析了PM2.5样品中总碳(TC)浓度及其碳同位素(δ^13C)。结果表明,采样期间TC的年平均浓度为(12.1±2.1)μg/m^3,总体上呈现冬季高、夏季低的变化趋势,可能是受不同季节气象因素和来源变化的影响。δ^13C的年平均值为(?26.1±0.2)‰,总体上呈现冬季高、春季低的变化趋势,可能是受不同来源的影响。利用贝叶斯模型计算南昌地区PM2.5中TC主要来源于C3植物燃烧和机动车尾气,年源贡献分别为49.3%和28.7%;其次是煤燃烧和C4植物燃烧,年源贡献分别为17.7%和4.2%。春季δ^13C值偏低是由于C3植物燃烧贡献相对较高,而冬季δ^13C值偏高则是煤燃烧贡献增加。  相似文献   

12.
近年来京津冀地区大气环境污染受到广泛关注,邯郸作为京津冀南部地区燃煤为主的工业城市之一,大气污染问题较为突出。为厘清邯郸市冬季大气重污染发生时细颗粒物(PM_(2.5))中主要化学成分的形成过程及光学特性,本研究于2016年1月23~30日,采集了PM_(2.5)样品,测定了水溶性离子组分和碳质组分的质量浓度,探讨了PM_(2.5)污染特征,在此基础上进一步分析了PM_(2.5)的光学特性。结果表明,采样期间PM_(2.5)平均质量浓度为(122.6±66.9)μg/m~3,水溶性离子占PM_(2.5)的36.0%,SO_4~(2-)、NO_3~-和NH_4~+3种离子(SNA)占水溶性离子的74.7%,是邯郸市PM_(2.5)中最主要的水溶性离子。有机碳(OC)与元素碳(EC)平均质量浓度分别为(35.6±24.0)μg/m~3和(10.4±8.0)μg/m~3,分别占PM_(2.5)的29.2%和7.5%。重污染期间PM_(2.5)平均质量浓度为216.3μg/m~3,是清洁时段(58.6μg/m~3)的3.7倍,且重污染期间EC、SNA和OC的质量浓度涨幅较明显。采样期间大气消光系数平均值为(780.9±439.1)Mm~(–1),有机物(OM)、EC、(NH_4)_2SO_4和NH_4NO_3的消光贡献依次为51.4%、12.3%、11.4%和11.3%。重污染期间大气消光系数为(1351.9±208.5)Mm~(–1),EC和NH_4NO_3消光系数的增长幅度高于其他组分,说明邯郸市大气重污染发生时需要加强关注EC和NH_4NO_3。  相似文献   

13.
庙岛群岛地质的新认识   总被引:1,自引:0,他引:1  
谢宗荣 《地质论评》1959,19(5):226-226
庙岛群岛在山东蓬莱的北部,其中最大的是长山岛、砣矶岛、隍城岛等,它们与一系列岛屿几成南北走向,把山东半岛与辽东半岛从渤海海水中连结起来。根据笔者近年在该处所作的比较详细的勘查工作,认为群岛的岩石不是如300万分之一地质图等所  相似文献   

14.
重点研究北京市区大气气溶胶中细粒子的污染特征,分析其质量浓度变化与各种自然影响因素的相关性,利用美国空气资源实验室的HYSPLIT模型对颗粒物进行溯源和追踪分析,为正确认识北京市区大气PM2.5污染状况提供重要基础数据,为以后的对比研究和制定相应的污染控制措施提供参考依据。结果表明:(1)PM2.5质量浓度的最高值出现在4月的沙尘天气期间中,由于受沙尘天气影响春季的PM2.5质量浓度居四季之首;(2)温度、相对湿度、风速、降水和气压等是影响PM2.5污染程度的重要因素,不同季节里、不同温度范围内,PM2.5的质量浓度与温度表现出不同的但都强烈的相关性;沙尘天气里风速低于某一阈值(10 km/h)时,PM2.5的质量浓度与风速呈负相关,反之则呈正相关;(3)沙尘主要来自西北、西北偏北或偏西方向,境外源有俄罗斯、蒙古和哈萨克斯坦等国的戈壁或沙漠地区,境内主要来自西部戈壁沙漠地带以及内蒙古的大范围干旱和半干旱地区,到达北京后继续向东或东南、东北方向运移,进入朝鲜、韩国、日本和俄罗斯等邻国。  相似文献   

15.
分析了2014~2018年北方5个典型中小盆地城市(兰州、银川、临汾、太原、南阳)PM10与PM2.5的浓度变化特征和大致来源类型。除2018年银川PM2.5浓度外,各市PM10和PM2.5年均浓度均超标;兰州、银川和南阳PM10与PM2.5呈逐年下降趋势,南阳下降最明显;临汾PM10与PM2.5呈逐年上升趋势;太原PM10与PM2.5稳定维持在一个高浓度状态。5个城市颗粒物浓度的季节变化特征一致:冬春高、夏秋低。对PM2.5/PM10值而言,冬季和夏季该比值较高,分别受取暖和降水的影响;春季和秋季该比值较低,分别受沙尘和秸秆焚烧及高强度建筑施工的影响。5市PM2.5和PM10浓度具有良好的线性关系,细颗粒占比大小顺序为临汾>南阳>太原>银川>兰州。  相似文献   

16.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

17.
为了研究喜马拉雅山北坡冬季大气气溶胶化学组分、光学特征及来源,2017年11—12月在珠穆朗玛峰站(QOMS)共采集22个PM2.5样品。结果显示:PM2.5中包括水溶性离子(WSIs)、有机质(OM)、元素碳(EC)在内的所有检测成分,总质量浓度为(3.36±1.06) μg?m-3;有机碳(OC)、元素碳(EC)和水溶性有机碳(WSOC)的浓度分别为(1.10±0.38)、(0.13±0.12)和(0.84±0.24) μg?m-3,浓度水平与偏远地区相当,低于季风前。碳质成分(OM+EC)占所有测试成分比例为73.6%,与之前珠峰站报道的研究结果相近。用PM2.5水溶性组分在365 nm处的光吸收效率(Abs365)来表征水溶性棕色碳(WS-BrC),它与WSOC、K+存在较好的相关性(R2=0.63、0.50),而与EC相关性弱(R2=0.01),说明水溶性棕色碳可能源于生物质燃烧和二次反应。MODIS火点信息和气团后向轨迹分析进一步表明,尼泊尔地区的燃烧活动是珠峰站冬季碳质气溶胶的重要来源。同时,喜马拉雅山脉独特的局地风场是污染物跨境传输至珠峰地区的重要原因。  相似文献   

18.
不同天气类型广东大气超级站细粒子污染特征初步研究   总被引:5,自引:0,他引:5  
2012年5月至7月期间,以广东大气超级监测站为观测平台,利用单颗粒气溶胶质谱仪(SPAMS)和其他多种环境监测仪器对大气污染现象进行高时间分辨的长期连续观测。以能见度和相对湿度为参考,将天气类型划分为2次灰霾、1次暴雨和多次晴朗天气过程。观测结果表明,SPAMS捕获的颗粒物数浓度与PM2.5和PM1的相关性(R2)分别达到0.538和0.448,呈现出一定的相关性。大气颗粒物浓度在不同天气条件下,浓度变化较大,其中,灰霾天气下,PM2.5和PM1浓度最大小时均值分别达到0.132 ng/m3和0.094 ng/m3。观测结果表明,粒径处于600~800 nm的细颗粒物对该区域的灰霾形成过程起了最为关键的作用。该地区的大气颗粒物类型主要可分为7种:元素碳(EC)、有机碳(OC)、元素-有机碳混合(ECOC)、大分子有机碳(HMOC)、海盐(Na-K)、富钾颗粒(K-rich)和富铅颗粒(Pb-rich)。灰霾天气,各类型颗粒物数量浓度均有一定程度的增加,其中以EC和K-rich的增加最为明显。分析表明,第一次灰霾主要是由于大气光化学反应起到主导作用,而生物质燃烧又增大了灰霾程度;第二次灰霾过程,生物质燃烧产生的影响更大。  相似文献   

19.
本文选用了镜质组反射率在0.77%-1.88%之间5 种不同成熟度的煤, 将其制成民用蜂窝煤球, 研究民用蜂窝煤燃烧排放颗粒物(PM)的化学组成, 包括元素(C、N、O、S)、有机碳(OC)、元素碳(EC)和水溶性无机离子(WSII), 稳定碳同位素组成特征和质量吸收效率值(MAE), 并讨论了它们与煤成熟度之间的关系.结果表明, 5 种原煤C、N、O、S 元素组成差别不大, 但是燃烧后排放的PM 化学组成差别比较大.无烟煤燃烧排放的PM 粒径分布呈双峰结构, 峰值分别在0.09 μm 和0.25 μm; 而烟煤PM 的峰值为0.58 μm.无烟煤排放PM 的颗粒数远小于烟煤.PM、OC 和EC 的排放受煤成熟度的影响非常大, 无烟煤排放的量最小, 分别为2.21 g/kg、0.22 g/kg 和0.004 g/kg; 成熟度最低的烟煤排放量最大, 分别为70.3 g/kg 、46.1 g/kg 和2.42 g/kg.PM、OC 和EC 的排放因子与煤的成熟度成幂指数关系.EC 的MAE 在0.17-21.9 m^2/g 之间, 与煤成熟度呈指数相关关系.燃煤WSII 的平均排放因子为801 mg/kg, WSII 当中含量最高的是NH4^+ 和24SO4^2- , 平均分别占WSII总量的23.5%和44.4%.燃煤排放PM 的δ^13C 变化范围为–24.5‰-–22.8‰, 平均值为–23.6‰.以上研究有助于人们从原煤性质的角度去考察民用燃煤对人类健康和气候变化的影响, 并为大气污染源解析提供一些科学依据.  相似文献   

20.
硫酸盐是大气颗粒物的重要组分,SO2与矿质颗粒物的非均相反应可能是硫酸盐和水溶性铁形成的重要途径之一,但目前对该反应途径的研究比较有限。本研究开展了不同相对湿度条件下SO2((7.14±0.29)μg/L)、NO2((5.13±0.21)μg/L)与针铁矿、磁铁矿、赤铁矿的非均相反应,定量分析了产物硫酸盐、硝酸盐以及水溶性铁的含量随反应时间的变化。结果表明,SO2与针铁矿反应24 h仍未达到饱和,平均反应摄取系数小于1×10?8,但其随着相对湿度增大而增大。当NO2和SO2共存时,SO2和针铁矿非均相反应24 h仍未达到饱和,相对于NO2与针铁矿反应,SO2的共存抑制了硝酸盐的生成;反应前24 h,SO2平均反应摄取系数小于1×10?8,非干态下相对湿度对SO2摄取系数无显著影响。SO2或SO2、NO2共存时与磁铁矿、赤铁矿的反应几乎无硫酸盐生成,仅在SO2与NO2共存时生成少量硝酸盐。此外,SO2与3种含铁矿物的非均相反应对Fe元素水溶性的促进作用非常有限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号