首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observation data of temperature, precipitation and snow depth have been compiled and generalized climatologically for a network of 38 stations in and around the Barents and Kara seas, for the period 1951–1992. The monthly precipitation totals were corrected for measuring errors, and the correction method is described in detail. The corrected precipitation values show that the annual precipitation in the region ranges from more than 500 mm along the coast of the Kola Peninsula to less than 200 mm in parts of the north-eastern Kara Sea. The solid fraction of the annual precipitation ranges from 70% in northern parts to 35% in southern parts. For the period 1951–1992 the analysis indicates decreasing trends in annual values of temperature, precipitation and snow depths in the north-eastern parts of the region.  相似文献   

2.
A thorough literature review has been undertaken to establish the first complete account of polychaetes recorded from the area around the volcanic island of Jan Mayen. The annotated checklist lists 121 species-level taxa, representing an increase from the 75 species previously recorded. The checklist is based on existing records, supplemented with material sampled in 1999, from which 42 species new to the area were reported. Some previously reported species from the area have been excluded because of inadequate documentation. The polychaete fauna of Jan Mayen is comparable with that of the mainland Norwegian coast and the Svalbard area. No taxa unique to the island were found. However, knowledge of the marine invertebrate fauna in general at Jan Mayen is sparse because few surveys have been undertaken there. It is expected that future expeditions will reveal further new taxon records for the area.  相似文献   

3.
Surface air temperature and precipitation records for the years 1958-1999 from ten meteorological stations located throughout West Siberia are used to identify climatic trends and determine to what extent these trends are potentially attributable to the Arctic Oscillation (AO). Although recent changes in atmospheric variability are associated with broad Arctic climate change, West Siberia appears particularly susceptible to warming. Furthermore, unlike most of the Arctic, moisture transport in the region is highly variable. The records show that West Siberia is experiencing significant warming and notable increases in precipitation, likely driven, in part, by large-scale Arctic atmospheric variability. Because this region contains a large percentage of the world's peatlands and contributes a significant portion of the total terrestrial freshwater flux to the Arctic Ocean, these recent climatic trends may have globally significant repercussions. The most robust patterns found are strong and prevalent springtime warming, winter precipitation increases, and strong association of non-summer air temperatures with the AO. Warming rates for both spring (0.5-0.8 °C/decade) and annual (0.3-0.5°C/decade) records are statistically significant for nine often stations. On average, the AO is linearly congruent with 96% (winter), 19% (spring), 0% (summer), 67% (autumn) and 53% (annual) of the warming found in this study. Significant trends in precipitation occur most commonly during winter, when four of ten stations exhibit significant increases (4-13 %/decade). The AO may play a lesser role in precipitation variability and is linearly congruent with only 17% (winter), 13% (spring), 12% (summer), 1% (autumn) and 26% (annual) of precipitation trends.  相似文献   

4.
Analysis of the wood anatomy of 481 driftwood specimens from Jan Mayen shows that Larix spp. constitute approximately 70% of the trees, while sawn logs are dominated by Pinus spp. by approximately 69%. A total of 356 driftwood samples from Jan Mayen and a small number of samples from Bjørnøya in the Barents Sea and the Troynoy Island in the Kara Sea were analysed by dendrochronological methods. A driftwood Pinus chronology was dated absolutely using chronologies from living trees of Pinus sylvestris in the lower proximity of the Angara River, a tributary of the Yenisey in Siberia. About 27% of the pine logs measured on Jan Mayen were found to originate in the same region, with end years concentrated in the 1940s and 1950s. A similar source was also found for Pinus driftwood logs on Bjørnøya and Troynoy. The results confirm and further delimit the source areas of the Yenisey driftwood established earlier from driftwood logs on Svalbard and Iceland. A subordinate source of both Pinus and Picea logs on Jan Mayen is northwest Russia, from the Kola Peninsula to the Pechora River. The Transpolar Drift Stream is believed to be the main distributor of driftwood from Siberian and northwest Russian sources to Jan Mayen, via the East Greenland Current. Dendrochronological dating reveals a strong, continuous input of ice-rafted driftwood from the Kara Sea. Radiocarbon datings from Jan Mayen show surface deposits of driftwood to be less than 500 years old, due mainly to extensive degradation of older wood and little or no land uplift.  相似文献   

5.
The spatial distribution of heat and freshwater content and potential energy of a several hundred metre thick surface layer are computed for the Nordic seas and adjacent parts of the northern North Atlantic and the Arctic Ocean using a total of almost 100 000 hydrographic stations. The fields clearly show the major features of the area's circulation, with warm salty water in the eastern part and fresher, colder water in the western part. Comparisons with published estimates show that the potential energy field, representing the baroclinic part of the flow, accounts for about 30 % of the total flow but roughly 100 % of the flow of Polar Water in the northern part of the East Greenland Current, about 50 % of the total flow in the Norwegian Atlantic Current, and just a small fraction of the flow in the eastern part of Fram Strait. This suggests that the barotropic circulation is quite important in many parts of the Nordic seas. The barotropic circulation is also clearly seen by its effects on the integrated fields with isolines following deep bathymetric contours. We speculate that the barotropic circulation in combination with topographic obstacles, like the Greenland–Scotland Ridge and the ridge system in the Jan Mayen area, may have large impact on the spreading of freshwater and heat in the Nordic seas.  相似文献   

6.
利用开都河流域上下游4个气象台站(上游巴音布鲁克,下游焉耆、和静、和硕)1960-2009年的气温、降水资料,采用趋势分析与距平等统计方法,分析了近50 a来开都河流域的主要气象要素变化特征。研究发现:(1)1960-2009年开都河流域上下游年平均气温均呈明显上升趋势,增长强度分别为0.27 ℃/10 a和0.22 ℃/10 a。2000年后气温升高尤其显著,上游和下游的气温分别较50 a平均水平偏高0.97 ℃和0.69 ℃。该流域年最高温没有明显增加,而上下游年最低气温分别上升0.41 ℃/10 a和0.61 ℃/10 a,并与年平均气温有较好的相关性。通过对不同年代际各月气温的分析,发现该地区气温季节性特征在过去50 a发生了明显的变化。主要表现为冬季气温总体上升,夏季气温相对稳定,冬季与夏季温差逐渐减小,季节性呈变弱趋势。上游年代际间气温季节变化较下游更明显;(2)开都河流域降水主要集中在夏季,近50 a上下游降水量均呈增加趋势且上游达显著水平。上下游在降水分布及变化特征上有较大差异,上游年平均降水总量(273 mm)明显高于下游(77 mm),且上游降水量增加强度(9.13 mm/10 a)高于下游(5.34 mm/10 a)。降水量年代际之间有一定差异,降水波动主要是在夏季,上游降水量的波动性大于下游。  相似文献   

7.
西藏羊卓雍湖流域近45 年气温和降水的变化趋势   总被引:4,自引:0,他引:4  
杜军  胡军  唐述君  鲍建华  拉巴 《地理学报》2008,63(11):1160-1168
利用西藏羊卓雍湖流域气象、水文观测站1961-2005 年逐月的平均气温、降水量等资 料, 分析了近45 年流域气温、降水的年际和年代际变化特征和异常年份, 以及羊湖水位变化趋势及影响因子, 结果表明: 近45 年流域年平均气温以0.25 oC/10a 的速率显著升高, 增温主要表现在秋、冬季。近25 年, 流域平均降水量除冬季呈减少趋势外, 其他各季节表现为显 著的增加趋势, 增幅为11.4~30.0 mm/10a, 夏季增幅最大; 年降水量以54.2 mm/10a 的速率明显增加。20 世纪60 年代至90 年代, 除夏季外, 其他3 季表现为逐年代增温趋势。在夏季, 降水量除80 年代偏少外, 其他3 个年代偏多; 而冬季相反, 80 年代降水偏多, 其他3 个年代偏少。流域年平均气温异常偏高年出现过3 次, 且发生在20 世纪90 年代末至21 世纪初; 60 年代后期和70 年代初降水多异常年份。自1997 年发电以来, 降水量呈增加趋势, 流域平均降水量达409.7 mm, 明显高于平衡降水量, 水位呈较明显的上升趋势。降水增多、日照减少, 以及气温明显升高、冰雪融水增加是造成水位上升的主要原因。  相似文献   

8.
基于1973—2015年间的全球综合无线电探空资料(IGRA),采用总体理查逊数(Bulk Richardson Number)方法,分析了北极扬马延岛43年间的大气边界层高度变化特征,并对其多年月均大气边界层高度变化以及年均大气边界层高度变化进行深入分析探讨。结果显示,扬马延岛白天对流边界层高度高于夜晚稳定边界层高度,夏季多年月均大气边界层高度远低于冬春季节的高度,夏季平均高度仅为262 m,而冬春季节高度在600 m附近。大气边界层高度的变化与地面相对湿度的变化呈现较好的反相关关系。由于受到墨西哥湾暖流的影响,岛屿全年温差较小,夏季的相对湿度较大,导致潜热通量较多,抑制了边界层内的对流过程,造成夏季大气边界层高度较低。此外,其年均高度在1973—1988年间出现波动下降,而后在1988—1995年快速上升,最后于1995—2015年间变化平稳。  相似文献   

9.
AcomparisonofclimaticchangebetweenSvalbardinArcticandtheQinghai┐TibetanPlateauKangShichang(康世昌),YaoTandong(姚檀栋)andQinDahe(秦大河...  相似文献   

10.
The spatial distribution patterns of climatic changes in Yakutia are considered. For 26 meteorological stations of Yakutia we calculated the linear trend coefficients of climatic characteristics: air temperature (mean annual, January and July temperatures) and the mean annual amount of atmospheric precipitation from 1966 to 2016. Maps of climate change trends were compiled from linear trend coefficients. A spatial analysis of the zonal (regional) peculiarities of the climate of Yakutia has been carried out. An increase in air temperature was established for the 50-year period under consideration. It was found that the annual values of the air temperature trend are positive and, on average, a characteristic trend change interval is 0.3 to 0.6 °C/10 yr. Most of the meteorological stations recorded trends of air temperature with maximum values in winter and minimum values in summer. It was determined that the values of the trends in annual precipitation show different directions, and positive trends occur on more than 70% of the territory of Yakutia. Their maximum corresponds to the mountain-taiga regions of Southern Yakutia. Negative trends in precipitation with values of up to–15 mm/10 yr. are observed in tundra landscapes. The findings show that different regions of Yakutia respond differently to climate change. The trend of an increase in mean annual temperature is largely due to the rise in temperatures during the winter months. The rise in air temperature in Yakutia may be part of global warming. Over the last 50 years there has been an increase in the amount of precipitation in Yakutia as a whole.  相似文献   

11.
Jan Mayen is a small (373 km2) remote island in the Norwegian Sea. One third of it is covered by glaciers, all located on the Beerenberg volcano. There have been at least two Holocene periods of glacier expansion at Jan Mayen. The first may have taken place around 2500 B.P. Some glaciers had their maximum extent during the second period, around 1850 A.D. They have subsequently shown an oscillating retreat, with marked expansion around 1910, and with a minimum extent around 1950. Many glaciers advanced again around 1960. The advance of Sørbreen probably culminated around 1965. The climate appears to have been more arctic-continental than today during these two periods of glacier advances, caused by expanded pack ice cover in the East Greenland current and strong influence from the Greenland-Arctic high pressure area. The interplay between the high pressure area and the low pressure tracks in the North Atlantic Ocean determines the climate over the north-western part of the Atlantic, and this results in parallel climate and glacier variations within this region. We conclude, contrary to previous reports, that the advances of the glaciers around 1960 were caused by reduced summer temperatures and ablation, and not by increased precipitation.  相似文献   

12.
The seasonal variability and spatial distribution of precipitation are the main cause of flood and drought events. The study of spatial distribution and temporal trend of precipitation in river basins has been paid more and more attention. However, in China, the precipitation data are measured by weather stations (WS) of China Meteorological Administration and hydrological rain gauges (RG) of national and local hydrology bureau. The WS data usually have long record with fewer stations, while the RG data usually have short record with more stations. The consistency and correlation of these two data sets have not been well understood. In this paper, the precipitation data from 30 weather stations for 1958–2007 and 248 rain gauges for 1995–2004 in the Haihe River basin are examined and compared using linear regression, 5-year moving average, Mann-Kendall trend analysis, Kolmogorov-Smirnov test, Z test and F test methods. The results show that the annual precipitation from both WS and RG records are normally distributed with minor difference in the mean value and variance. It is statistically feasible to extend the precipitation of RG by WS data sets. Using the extended precipitation data, the detailed spatial distribution of the annual and seasonal precipitation amounts as well as their temporal trends are calculated and mapped. The various distribution maps produced in the study show that for the whole basin the precipitation of 1958–2007 has been decreasing except for spring season. The decline trend is significant in summer, and this trend is stronger after the 1980s. The annual and seasonal precipitation amounts and changing trends are different in different regions and seasons. The precipitation is decreasing from south to north, from coastal zone to inland area.  相似文献   

13.
北极Svalbard地区气候变化特征及其与青藏高原对比   总被引:6,自引:0,他引:6  
康世昌  阎宇平 《地理科学》1998,18(4):312-319
通过分析Svalbard地区近80a来的气候变化表明,其总趋势为缓慢变暖,但70年代后期Svalbard地区的降温是全球升温的一个例外。同时对典型台站的分析得出:Svalbard地区与青藏高原气候变化存在着一定相关性,但局地的气候变化原因导致了两地之间的某些差异。  相似文献   

14.
三江平原气温降水变化分析——以建三江垦区为例   总被引:2,自引:0,他引:2  
苏晓丹  栾兆擎  张雪萍 《地理研究》2012,31(7):1248-1256
气温及降水与人类生产生活密切联系,其变化必然会对生态系统和社会经济等产生重大影响。利用三江平原建三江垦区15个农场气象站1965~2002年气温和降水资料,运用气候趋势系数和一元回归分析法进行气候变化分析。结果表明:近40年来本区气温呈显著上升趋势,平均气温以0.50℃/10a幅度升高,不同季节平均气温均呈上升趋势,且冬季增幅最大,达0.82℃/10a。气温升高存在显著的区域差异,最大的增温中心位于南部边缘,气温倾向率大于0.60℃/10a。降水趋势性变化不显著,但仍呈弱减少趋势,年降水量倾向率为-1.90mm/10a,四季降水量以秋季减少最为显著。在此基础上进行气候突变分析,结果表明气温突变出现在1987年,降水突变出现在1980年和1997年,但降水突变不明显。研究三江平原建三江垦区的气候变化对于保障区域粮食安全具有重要的指导意义。  相似文献   

15.
新疆气候变化及其对生态环境的影响   总被引:86,自引:31,他引:55  
近100年来,中国西部地区从19世纪末到20世纪初气温开始上升,20世纪40年代达到最高.以后气温下降.大约在70年代初达到最低.以后气温持续上升.增温主要出现在1970年以后。根据新疆56个气象观测台站的气温资料统计,年均温呈稳定的上升趋势。滑动t检验表明1980年是气温突变的转折点。新疆已有的气象观测记录表明.新疆温度变化和全国的变化较为一致。新疆降水量的变化比较复杂.分东疆、北疆、南疆加以讨论.南北疆降水增加明显,东疆则变化不大。降水量的增量北疆最大东疆最少,而降水量的增幅则南疆最大东疆最少。20世纪80年代中期以来,沙尘暴发生日数在波动中减少,与大风发生日数有很强的一致性。70年代以来。温度的升高,局部地区的降水明显,增加对新疆生态环境的影响进行了分析。  相似文献   

16.
四川省近50年降水的变化特征及影响   总被引:20,自引:1,他引:19  
利用1961-2008 年四川省133 个气象站逐日降水资料,研究分析了四川省近50 年大气降水的变化特征及影响。研究发现:四川省年均暴雨日数从西到东呈现“增-减-增”的总体变化趋势:甘孜州、凉山州南部、攀枝花等地区年均暴雨日数主要呈弱增加趋势,四川盆地西部、中部呈明显减少趋势,盆地东北部地区则呈较强增加趋势;除了盆地中部、南部部分地区外,四川省其余地区的暴雨强度主要呈增强趋势,其中盆地东北部加强趋势明显。四川盆地西部、中部地区各量级雨日均主要呈减少趋势,无雨日明显增加,年降水减少明显;盆地东北部地区年均暴雨、大雨日数及强度都呈明显增加、增强趋势,此区域年降水量的增加主要是由于大雨、暴雨量的增加导致。近50 年来四川省大气降水的变化形势给不同的区域带来了不同影响:四川盆地西部和中部地区大气降水明显减少,影响到地表径流以及地下水位,导致水资源紧张;川西高原北部阿坝州降水也明显减少,在一定程度上促进了生态环境恶化;而盆地东北部、甘孜州、攀枝花和凉山州等地区暴雨日数和强度的增多、增强导致部分地区洪涝、地质灾害频发。  相似文献   

17.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

18.
近60a来新疆不同海拔气候变化的时空特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
全球变暖是当前全球气候变化研究的热点之一,新疆深居亚欧大陆内陆,地形气候复杂,探讨该区域气候变化与海拔的关系对全球气候变化研究具有重要的参考意义。基于1958—2017年新疆41个气象站的月和年平均气候数据,采用一元线性回归、Mann Kendall(M-K)趋势分析和突变检验等方法分析该地区气候变化的时空分布与海拔的关系。结果表明:1958—2017年新疆年均气温、年均降水量均呈上升趋势,但增加幅度具有时间和空间差异。在时间上,北疆四季平均气温增温幅度均大于南疆(冬季除外),四季降水量增幅北疆大于南疆(夏季除外);在空间上,北疆气温和降水的增幅均大于南疆。研究区各个站点气温呈现出南部高而北部低的空间格局,年均降水量北部多,南部低。各个站点气温倾向率总体随海拔增加而减少,年均降水量变化率随海拔升高而增加,在不同海拔带内部存在差异。综上所述,受全球气候变暖的影响,近60 a来新疆年均气温和年均降水量均呈上升趋势,尤其是北疆对全球气候变暖的响应较为敏感。  相似文献   

19.
川渝地区气候与物候的变化特征分析   总被引:2,自引:0,他引:2  
利用川渝地区44个气象台站的气象资料和2个物候观测站的物候资料分析了该地区的气候与物候变化特征:最近10 a年均温度比前30多a高0.68℃,年均降水量基本无变化。低温主要分布在川西高原,低温天数、低温积温绝对值都在减少。日均最高温度在高原南部、西南山地减少,其它地区都增加;日均最低温度都在增暖。降水在四川盆地下降,在重庆西部、川西高原增加。降水日数在高原西部增加,其它地区都下降。春始期仁寿略微推迟,北碚微弱提前;秋始期都推迟。展叶期的杏树、刺槐、水杉、紫荆、梧桐推迟,紫藤、毛桃提前。落叶期仁寿刺槐提前,北碚的植物全部推迟。  相似文献   

20.
New aeromagnetic data, K-Ar age determinations of dredged marine igneous rocks, as well as other geophysical evidence have shed light on the chronology, nature and evolution of the northern Iceland Plateau. Correspondence between seismic refraction profiles taken on the Jan Mayen Ridge and westward through Jan Mayen Island, suppressed aeromagnetic anomalies, earthquake surface wave studies, and ages of dredged igneous rocks suggest these strata may form an extended region of thickened crust, possibly of Caledonian age, extending westward toward the Kolbeinsey Ridge and northwest to the south wall of the Jan Mayen Fracture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号