首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

2.
Voids caused by shadow, layover, and decorrelation usually occur in digital elevation models (DEMs) of mountainous areas that are derived from interferometric synthetic aperture radar (InSAR) datasets. The presence of voids degrades the quality and usability of the DEMs. Thus, void removal is considered as an integral part of the DEM production using InSAR data. The fusion of multiple DEMs has been widely recognized as a promising way for the void removal. Because the vertical accuracy of multiple DEMs can be different, the selection of optimum weights becomes a key problem in the fusion and is studied in this article. As a showcase, two high-resolution InSAR DEMs near Mt. Qilian in northwest China are created and then merged. The two pairs of InSAR data were acquired by TerraSAR-X from an ascending orbit and COSMO-SkyMed from a descending orbit. A maximum likelihood fusion scheme with the weights optimally determined by the height of ambiguity and the variance of phase noise is adopted to syncretize the two DEMs in our study. The fused DEM has a fine spatial resolution of 10 m and depicts the landform of the study area well. The percentage of void cells in the fused DEM is only 0.13 %, while 6.9 and 5.7 % of the cells in the COSMO-SkyMed DEM and the TerraSAR-X DEM are originally voids. Using the ICESat/GLAS elevation data and the Chinese national DEM of scale 1:50,000 as references, we evaluate vertical accuracy levels of the fused DEM as well as the original InSAR DEMs. The results show that substantial improvements could be achieved by DEM fusion after atmospheric phase screen removal. The quality of fused DEM can even meet the high-resolution terrain information (HRTI) standard.  相似文献   

3.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

4.
Depending on scale, topographic maps depicting the shape of the land surfaces of the Earth are produced from different data sources. National topographic maps at a scale of 1:25 000 (25K maps) produced by General Command of Mapping are used as the base map set in Turkey. This map set, which consists of approximately 5500 sheets, covers the whole country and is produced using photogrammetric methods. Digital Elevation Models (DEMs) created from these maps are also available. Recently, another data source, Synthetic Aperture Radar (SAR) interferometric data, has become more important than those produced by conventional methods. The Shuttle Radar Topography Mission (SRTM) contains elevation data with 3 arc-second resolution and 16 m absolute height error (90 percent confidence level). These data are freely available via the Internet for approximately 80 percent of the Earth's land mass. In this study, SRTM DEM was compared with DEM derived from 25K topographic maps for different parts of Turkey. The study areas, each covering four neighboring 25K maps, and having an area of approximately 600 km2, were chosen to represent various terrain characteristics. For the comparison, DEMs created from the 25K maps were obtained and organized as files for each map sheet in vector format, containing the digitized contour lines. From these data, DEMs in the resolution of 3 arc-second were created (25K-DEM), in the same structure as the SRTM DEM, allowing the 25K-DEMs and the SRTM DEM to be compared directly. The results show that the agreement of SRTM DEM to the 25K-DEM is within about 13 m, which is less than the SRTM's targeted error of 16 m. The spatial distribution of the height differences between SRTM-DEM and the 25K-DEM and correlation analysis show that the differences were mainly related to the topography of the test areas. In some areas, local height shifts were determined.  相似文献   

5.
A case study of using external DEM in InSAR DEM generation   总被引:2,自引:0,他引:2  
Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.  相似文献   

6.
7.
Digital elevation models (DEMs) are commonly constructed using two main types of regular grids: plane square grids and spheroidal equal angular grids. Methods and algorithms intended for plane square‐gridded DEMs should not be directly applied to spheroidal equal angular DEMs. This is because these grids have fundamentally different geometry. However, some researchers continue to apply square‐grid algorithms to spheroidal equal angular DEMs. It seems appropriate to consider once again the specifity of morphometric treatment of spheroidal equal angular DEMs. This article, first, demonstrates possibilities of direct calculation of local, nonlocal, and combined morphometric variables from spheroidal equal angular DEMs exemplified by slope gradient, catchment area, and topographic index. Second, the article shows computational errors when algorithms for plane square‐gridded DEMs are unreasonably applied to spheroidal equal angular DEMs. The study is exemplified by two DEMs. A medium‐resolution DEM of a relatively small, high‐mountainous area (Mount Elbrus) was extracted from the SRTM1 DEM. A low‐resolution DEM of a vast region with the diverse topography (the central and western regions of Kenya) was extracted from the SRTM30_PLUS DEM. The results show that application of square‐grid methods to spheroidal equal angular DEMs leads to substantial computational errors in models of morphometric variables.  相似文献   

8.
Cawthorn Camps is a Roman site of probable late 1st and early 2nd century date comprising two forts, one with a later annexe, and a camp. The site survives as earthworks and, within the main defences, there are many slight embanked structures. The current multidisciplinary programme of research has included geophysical prospection, excavation, ground and aerial survey; it is a joint initiative by the North York Moors National Park Authority and English Heritage. The project aims to increase academic understanding, improve information available to the public and assist the production of a revised management plan for this nationally important site.
Large-scale air photographs and digital photogrammetry have been used to produce a plan, at scale 1:500, of the earthworks to a precision of ±10 cm. This plan has been used as a base map with which to rectify other key photographs and plans allowing further detailed interpretation and mapping to be undertaken. The air photographic work has also investigated some of the products available through digital photogrammetric technology, such as digital elevation models (DEMs), orthophotographs and perspective views.  相似文献   

9.
利用主成分分析揭示变量之间关系的特性,进而提出一种既能保证较高精度又能较好地保持地形形态特征的DEM格网聚合方法。首先根据主成分变换模型推导DEM格网聚合数学公式,构建主成分聚合模型;然后以30m分辨率DEM转换为90m分辨率DEM为例,根据格网点属性间的权重关系聚合重构DEM。在此基础上,以均值聚合和双线性重采样聚合方法为比较对象,从聚合前后的检查点高程偏差的统计描述、空间分布与自相关性、地形形态保持程度方面分析3种聚合策略下重构DEM的误差特性。最后运用描述统计、半变异分析和等高线套合方法,定量评价主成分聚合重构DEM的质量效果。试验分析结果表明,同均值聚合和重采样聚合相比较,该方法重构的DEM既能保持较高精度,又能很好地保持地形形态特征。  相似文献   

10.
A raster and vector GIS was created for the North Appalachian Experimental Watershed (NAEW) from legacy (1960) 1:2,400‐scale contour maps. The intent of the study was to use terrain data for the spatial modeling of soil organic carbon. It was hypothesized that DEMs derived from these data would be more accurate and therefore more useful for terrain‐based soil modeling than those from USGS 1:24,000‐scale contour data. Central tasks for this study were to digitally capture the 1:2,400‐scale maps, convert digital contour data sources to raster DEMs at multiple resolutions, and derive terrain attributes. A flexible approach was adopted, using software outside of mainstream GIS sources where scientifically or practically advantageous. Elevation contours and streamlines were converted to raster DEMs using ANUDEM. DEMs ranging in resolution from 0.5–30 m were tested for accuracy against precision carrier‐phase GPS data. The residual standard deviation was 1.68 meters for the USGS DEM and 0.36 meters for the NAEW DEM. The optimal horizontal resolution for the NAEW DEM was 5 m and for the USGS 10 m. Five and 10 m resolution DEMs from both data sources were tested for carbon prediction. Multiple terrain parameters were derived as proxies for surficial processes. Soil samples (n = 184) were collected on four zero‐order watersheds (conventional tillage, no‐till, hay and pasture). Multiple least squares regressions (m.l.s.) were used to predict mass C (kg m?2, 30 cm depth) from topographic information. Model residuals were not spatially autocorrelated. Statistically significant topographic parameters were attained most consistently from the 5 m NAEW DEM. However, topography was not a strong predictor of carbon for these watersheds, with r2 ranging from 0.23 to 0.58.  相似文献   

11.
简要介绍了数字高程模型(digital elevation model,DEM)的起源与定义,根据4种不同的观测平台分类介绍了DEM数据获取方法,给出目前国际上发布的高分辨率全球DEM的主要性质和特点。重点介绍了9大类全球DEM,分析了DEM质量评估相关的评定方法和精度指标。论述了DEM在地质灾害监测、海岸带脆弱性分析方面的应用,以美国地质勘探局和德国航空太空中心正在开展的DEM项目为例,讨论了高精度、高分辨率全球同质DEM和地形测深高程模型的最新需求,最后总结展望全球高分辨率DEM的发展趋势。  相似文献   

12.
For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.  相似文献   

13.
为了利用机载激光雷达点云生成高保真、多尺度的数字高程模型(DEM),提出了一种基于综合生成策略的方法:首先,利用点云数据中的地面点生成高分辨率、高保真的DEM作为基础DEM;然后,通过迭代的方式对上一层较高分辨的DEM进行综合获取较低分辨率、高保真的DEM。实验表明,本文方法不仅具有可行性,而且生成的多尺度DEM具有高保真的特性。  相似文献   

14.
对于我国西部高山区,如横断山脉,高程起伏明显,常年被云雾覆盖,日照稀少,采用传统方法进行地形图测绘存在较大困难,依赖单一方法获取的DEM往往难以满足测图的精度要求。为充分利用不同传感器和不同方法生成的DEM的优点,本文根据各方法的特点,结合小比例尺地形图中低精度的DEM,基于绝对精度等先验知识确定优先级别、相关/干系数确定融合权重,提出了一种包括雷达干涉测量、光学立体摄影测量、不同侧视方向像对雷达立体测图生成的四种多源DEM的像素级融合算法。在横断山脉地区使用所提融合算法进行了实验,获得了一个总体精度得到提高的无缝DEM,实验结果表明新算法为地形复杂的测图困难地区DEM获取提供了一种可能的解决方案。  相似文献   

15.
对DEM地形定量因子挖掘中若干问题的探讨   总被引:18,自引:6,他引:18  
在地学研究中 ,地形结构信息的提取具有重要意义 ,而如何利用数字高程模型进行提取一直是地学工作者所面临的重要课题。在总结前人研究成果的基础上 ,从地形特征分析和水系特征分析两方面 ,比较了利用数字高程模型自动提取地形定量因子的基本原理、方法以及优缺点 ,并对其中存在的诸多理论与技术问题进行了系统的分析与探讨  相似文献   

16.
Accuracy assessment of GDEM,SRTM, and DLR-SRTM in Northeastern China   总被引:1,自引:0,他引:1  
This paper compares the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Shuttle Radar Topography Mission (SRTM) C-band and German Aerospace Centre (DLR)-SRTM X-band digital elevation models (DEMs) with the Ziyuan 3 (ZY-3) stereoscopic DEM and ground control points (GCPs). To date, the horizontal error of these DEMs has received little attention in accuracy assessments. Using the ZY-3 DEM as reference, this study examines (1) the horizontal offset between the three DEMs and the reference DEM using the normalised cross-correlation method, (2) the vertical accuracy of those DEMs using kinematic GPS data and (3) the relationship between the three DEMs and the reference ZY-3 DEM. The results show that the SRTM and DLR-SRTM have greater vertical accuracy after applying horizontal offset correction, whereas the vertical accuracy of the ASTER GDEM is less than the other two DEMs. These methods and results can be useful for researchers who use DEMs for various applications.  相似文献   

17.
DEM地形信息提取对比研究——以坡度为例   总被引:2,自引:1,他引:1  
由于DEM数据本身多尺度因素,加之地形、地貌特征具有宏观性与区域分异性的特点,直接的信息提取往往很难达到预期的目的。利用DEM制作坡度图高效、省力,但其精度有很大的不确定性,同时DEM制作过程中的误差传播、转移对坡度信息的影响缺少系统的判断依据。选取位于陕北黄土高原上的两个不同地区作为实验样区,在不同DEM生产的基础上,以高精度的1∶10 000DEM为准值,通过对1∶5万和1∶1万DEM提取定量地形要素的叠合、比较与统计分析,探讨具有不同地貌类型的区域1∶5万DEM提取地形信息的精度及其统计意义上的数量百分比关系。  相似文献   

18.
Modelling the Spatial Distribution of DEM Error   总被引:7,自引:0,他引:7  
  相似文献   

19.
The Digital Elevation Model (DEM) is one of the important parameters of soil erosion assessment and notable uncertainties are found in using different resolutions of the DEM. Revised Universal Soil Loss Equation model has been applied to analyze the effect of open-source DEMs with different resolution and accuracy on the uncertainties of soil erosion modelling in a part of the Narmada river basin in Madhya Pradesh in central India. Selected open-source DEMs are GTOPO30 (1 km), SRTM (30 and 90 m), CARTOSAT (30 m) and ASTER (30 m), used for estimating erosion rate. Results with better accuracy are achieved with the high-resolution DEMs (30 m) with higher vertical accuracy than the coarse resolution DEMs with lower accuracy. This study has presented potential uncertainties introduced by the open-source DEMs in soil erosion modelling for better understanding of appropriate selection and acceptable errors for researchers.  相似文献   

20.
A landslide susceptibility model, employing a digital elevation model (DEM) and geological data, was used in a GIS to predict slope stability in a region of the H J Andrews Long-Term Research Forest, located in the Western Cascade Range in Oregon, USA. To evaluate the contribution of error in elevation to the uncertainty of the final output of the model, several different, but equally probable, versions of the input DEM were created through the addition of random, spatially autocorrelated noise (error) files. The realized DEMs were then processed to produce a family of slope stability maps from which the uncertainty effects of elevation error upon landslide susceptibility could be assessed. The ability to assess this uncertainty has the potential to help us better understand the inherent strengths and weaknesses of applying digital data and spatial information systems to this application, and to facilitate improved natural resource management decisions in relation to timber harvesting and slope stability problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号