首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对经典的迭代三角网加密算法(PTD)过度侵蚀地形、误差累积的问题,提出了一种基于区域生长的多尺度滤波方法。该方法引入了金字塔策略建立不同层次的点云结构,以上层种子点为基准对下层种子点进行处理:先通过不规则三角网滤除非地面点,然后依据局部地形设置动态阈值,以表面拟合区域生长算法增长受侵蚀的地面种子点,循环迭代逐渐逼近真实地面。通过对ISPRS提供的15个基准数据集进行测试,第Ⅰ、Ⅱ类误差以及总误差分别为2.40%、3.67%、2.84%,Kappa系数为93.74%。结果表明,该算法具有更强的性能,可以获得理想的地面模型。  相似文献   

2.
平面约束条件在LIDAR点云滤波中的应用   总被引:1,自引:1,他引:0  
介绍了一种利用平面约束条件对LIDAR点云数据进行滤波的方法,利用每个数据点的邻域点拟合平面,根据平面约束条件和平面点分类方法得到地面点,最后利用地面点内插该区域的DTM.  相似文献   

3.
Generalization of DEM for terrain analysis using a compound method   总被引:5,自引:0,他引:5  
This paper reports an investigation into the generalization of a grid-based digital elevation model (DEM) for the purpose of terrain analysis. The focus is on the method of restructuring the grid-based surface elevation data to form a triangulated irregular network (TIN) that is optimized to keep the important terrain features and slope morphology with the minimum number of sample points. The critical points of the terrain surface are extracted from the DEM based on their significance, measured not only by their local relief, but also by their importance in identifying inherent geomorphological and drainage features in the DEM. A compound method is proposed by integrating the traditional point-additive and feature-point methods to construct a drainage-constrained TIN. The outcome is then compared with those derived from other selected methods including filtering, point-additive or feature-point algorithms. The results show that the compound approach is capable of taking advantage of both point-additive and feature-point algorithms to maximally keep the terrain features and to maintain RMSE at an acceptable level, while reducing the elevation data points by over 99%. The analytical result also shows that the proposed method outperforms the compared methods with better control in retaining drainage features at the same level of RMSE.  相似文献   

4.
For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.  相似文献   

5.
Accuracy assessment of lidar-derived digital elevation models   总被引:2,自引:0,他引:2  
Despite the relatively high cost of airborne lidar-derived digital elevation models (DEMs), such products are usually presented without a satisfactory associated estimate of accuracy. For the most part, DEM accuracy estimates are typically provided by comparing lidar heights against a finite sample of check point coordinates from an independent source of higher accuracy, supposing a normal distribution of the derived height differences or errors. This paper proposes a new methodology to assess the vertical accuracy of lidar DEMs using confidence intervals constructed from a finite sample of errors computed at check points. A non-parametric approach has been tested where no particular error distribution is assumed, making the proposed methodology especially applicable to non-normal error distributions of the type usually found in DEMs derived from lidar. The performance of the proposed model was experimentally validated using Monte Carlo simulation on 18 vertical error data-sets. Fifteen of these data-sets were computed from original lidar data provided by the International Society for Photogrammetry and Remote Sensing Working Group III/3, using their respective filtered reference data as ground truth. The three remaining data-sets were provided by the Natural Environment Research Council's Airborne Research and Survey Facility lidar system, together with check points acquired using high precision kinematic GPS. The results proved promising, the proposed models reproducing the statistical behaviour of vertical errors of lidar using a favourable number of check points, even in the cases of data-sets with non-normally distributed residuals. This research can therefore be considered as a potentially important step towards improving the quality control of lidar-derived DEMs.  相似文献   

6.
Lidar (laser scanning) technology has been proven as a prominent technique for the acquisition of high-density and accurate topographic information. Because of systematic errors in the lidar measurements (drifts in the position and orientation information and biases in the mirror angles and ranges) and/or in the parameters relating the system components (mounting parameters), adjacent lidar strips may exhibit discrepancies. Although position and orientation drifts can have a more significant impact, these errors and their impact do not come as a surprise if the quality of the GPS/INS integration process is carefully examined. Therefore, the mounting errors are singled out in this work. The ideal solution for improving the compatibility of neighbouring strips in the presence of errors in the mounting parameters is the implementation of a rigorous calibration procedure. However, such a calibration requires the original observations, which may not be usually available. In this paper, a strip adjustment procedure to improve the compatibility between parallel lidar strips with moderate flight dynamics (for example, acquired by a fixed-wing aircraft) over an area with moderately varying elevation is proposed. The proposed method is similar to the photogrammetric block adjustment of independent models. Instead of point features, planar patches and linear features, which are represented by sets of non-conjugate points, are used for the strip adjustment. The feasibility and the performance of the proposed procedure together with its impact on subsequent activities are illustrated using experimental results from real data.  相似文献   

7.
基于Coons曲面的规则格网DEM表面模型   总被引:7,自引:0,他引:7  
内插是数字高程模型的核心问题。目前的内插模型主要是由离散的格网数据构建的连续曲面,直接以点推面,可能存在较大的地形误差。本文建立的Coons曲面DEM表面模型,首先利用离散的格网数据构造与格网边界相对应的地形剖面曲线的拟合曲线,再基于拟合曲线构建DEM表面模型。实验表明:Coons曲面DEM表面模型是一种高精度的DEM表面模型,其地形模拟误差比直接基于格网数据建立的双线性内插、样条函数内插和移动曲面拟合法的误差都小,实际地形模拟误差与双线性模型相比减少15%-28%,且精度随着构建边界拟合曲线所用格网点的增多而逐渐提高。  相似文献   

8.
Over the past decades, several filters have been developed to derive a Digital Terrain Model (DTM) from a Digital Surface Model (DSM), by means of filtering out aboveground objects such as vegetation. In this filtering process, however, one of the major challenges remains to precisely distinguish sharp terrain features, e.g. ridges, agricultural terraces or other anthropogenic geomorphology such as open-pit mines, riverbanks or road ramps. Hence, loss of elevation data around terrain edges (and consequent smoothing) is very common with existing algorithms. In terraced landscapes, the preservation of precise geomorphology is of key importance in digital terrain analyses, such as hydrologic and erosion modelling, or automatic feature recognition and inventorying. In this work, we propose a new filtering method called TERRA (Terrain Extraction from elevation Rasters through Repetitive Anisotropic filtering). The novelty of the algorithm lies within its usage of terrain aspect to guide the anisotropic filtering direction, therefore maximising the preservation of terrain edges. We derived six DTMs from DSMs using UAV Structure from Motion (SfM) photogrammetry, laser altimetry and satellite sources (grid resolutions ranging from 0.1–1.0 m). The results indicated a close agreement of DTMs filtered using the TERRA algorithm and reference DTMs, while terrace risers were well preserved even under thick canopies of vines and trees. Compared to existing filtering approaches, TERRA performed well in minimising Type I errors (false ground removal), while Type II errors occurred locally where vegetation was covering the terrace edges. Given the promising filtering performance, and supported by the minimal requirements of parameterisation and computation, the TERRA algorithm could be a useful tool in DTM preparation for digital terrain analysis of agricultural terraces and similar hillslopes characterised by a complex mosaic of sharp terrain and non-terrain features.  相似文献   

9.
针对传统趋势面滤波法在多波束测深数据粗差探测方面存在曲面拟合函数不确定、滤波不彻底以及部分水深点被不合理剔除的问题,通过引入散乱水深点局部最小范围——自然邻点影响域的概念,提出一种基于自然邻点影响域的多波束测深数据趋势面滤波改进算法。首先,通过对自然邻点影响域内的局部曲面进行分析,构造了影响域内特定局部坐标系下的统一曲面拟合函数;然后,利用该统一曲面拟合函数按照所提传递式迭代趋势面滤波法进行顺次迭代,逐步滤除影响正常水深点判定的粗差数据;最后,根据突变地形边界点在其相邻邻域地形内连续性不一致的特性,建立了面向突变地形边界点的判断准则。试验结果表明:该改进算法可适应不同复杂程度的海底地形,有效剔除多波束水深数据中的粗差点,同时对实际海底地形中的正常水深点和各种特殊水深点进行保留,显著提高了海底地形表达的精度。  相似文献   

10.
Users of geographic information systems (GIS) usually render terrain using a point light source defined by an illumination vector. A terrain shaded from a single point provides good perceptual cues to surface orientation. This type of hill shading, however, does not include any visual cues to the relative height of surface elements. We propose shading the terrain under uniform diffuse illumination, where light arrives equally from all directions of a theoretical sky surrounding the terrain. Surface elements at lower elevations tend to have more of the sky obscured from view and are thus shaded darker. This tinting approach has the advantage that it provides more detailed renderings than point source illumination. We describe two techniques of computing terrain shading under uniform diffuse illumination. One technique uses a GIS–based hill-shading and shadowing tool to combine many point source renderings into one approximating the terrain under uniform diffuse illumination. The second technique uses a C++ computer algorithm for computing the inclination to the horizon in all azimuth directions at all points of the terrain. These virtual horizons are used to map sky brightness to the rendering of the terrain. To evaluate our techniques, we use two Digital Elevation Models (DEMs)—of the Schell Creek Range of eastern Nevada and a portion of downtown Houston, Texas, developed from Light Detection and Ranging (lidar) data. Renderings based on the uniform diffuse illumination model show more detailed changes in shading than renderings based on a point source illumination model.  相似文献   

11.
A method is presented for filtering and classification of terrestrial laser scanner point clouds. The algorithm exploits the four-channel (blue, green, red and near infrared) multispectral imaging capability of some terrestrial scanners using supervised, parametric classification to assign thematic class labels to all scan cloud points. Its principal advantage is that it is a completely data-driven algorithm and is independent of spatial sampling resolution since the processing is performed in four-dimensional spectral feature space. Its application to two data-sets of different spatial extent and spatial and spectral complexity is reported, for which respective overall classification accuracies of 87·0% and 82·0% were achieved. Analysis of the input data with emphasis on the characteristics pertinent to the anticipated outcomes precedes detailed analysis of the classification results and error sources and their causes. Erroneously classified points are attributed to radiometric errors stemming from both detector hardware and physical effects.  相似文献   

12.
Progressive TIN densification (PTD) is one of the classic methods for filtering airborne LiDAR point clouds. However, it may fail to preserve ground measurements in areas with steep terrain. A method is proposed to improve the PTD using a point cloud segmentation method, namely segmentation using smoothness constraint (SUSC). The classic PTD has two core steps. The first is selecting seed points and constructing the initial TIN. The second is an iterative densification of the TIN. Our main improvement is embedding the SUSC between these two steps. Specifically, after selecting the lowest points in each grid cell as initial ground seed points, SUSC is employed to expand the set of ground seed points as many as possible, as this can identify more ground seed points for the subsequent densification of the TIN-based terrain model. Seven datasets of ISPRS Working Group III/3 are utilized to test our proposed algorithm and the classic PTD. Experimental results suggest that, compared with the PTD, the proposed method is capable of preserving discontinuities of landscapes and reducing the omission errors and total errors by approximately 10% and 6% respectively, which would significantly decrease the cost of the manual operation required for correcting the result in post-processing.  相似文献   

13.
为了克服一般自动滤波算法对复杂地形的不适应性而产生大量误分的现象,提出了基于切片数据的LiDAR数据线分类滤波算法。该算法利用人眼对地形判断的先验知识,并使用多层次自适应高度阈值的滤波方法得到初始滤波结果,再利用三维空间中的角度特性进行优化,从而对断裂线地形能取得很好的滤波效果。最后采用VC++编程实现了本文提出的线分类算法,并经过试验分析比较,证明了该算法的适用性,能够适应高精度DEM的快速制作。  相似文献   

14.
Joanne  Poon  Clive S.  Fraser  Zhang  Chunsun  Zhang  Li  Armin  Gruen 《The Photogrammetric Record》2005,20(110):162-171
The growing applications of digital surface models (DSMs) for object detection, segmentation and representation of terrestrial landscapes have provided impetus for further automation of 3D spatial information extraction processes. While new technologies such as lidar are available for almost instant DSM generation, the use of stereoscopic high-resolution satellite imagery (HRSI), coupled with image matching, affords cost-effective measurement of surface topography over large coverage areas. This investigation explores the potential of IKONOS Geo stereo imagery for producing DSMs using an alternative sensor orientation model, namely bias-corrected rational polynomial coefficients (RPCs), and a hybrid image-matching algorithm. To serve both as a reference surface and a basis for comparison, a lidar DSM was employed in the Hobart testfield, a region of differing terrain types and slope. In order to take topographic variation within the modelled surface into account, the lidar strip was divided into separate sub-areas representing differing land cover types. It is shown that over topographically diverse areas, heighting accuracy to better than 3 pixels can be readily achieved. Results improve markedly in feature-rich open and relatively flat terrain, with sub-pixel accuracy being achieved at check points surveyed using the global positioning system (GPS). This assessment demonstrates that the outlook for DSM generation from HRSI is very promising.  相似文献   

15.
The LiDAR point clouds captured with airborne laser scanning provide considerably more information about the terrain surface than most data sources in the past. This rich information is not simply accessed and convertible to a high quality digital elevation model (DEM) surface. The aim of the study is to generate a homogeneous and high quality DEM with the relevant resolution, as a 2.5D surface. The study is focused on extraction of terrain (bare earth) points from a point cloud, using a number of different filtering techniques accessible by selected freeware. The proposed methodology consists of: (1) assessing advantages/disadvantages of different filters across the study area, (2) regionalization of the area according to the most suitable filtering results, (3) data fusion considering differently filtered point clouds and regions, and (4) interpolation with a standard algorithm. The resulting DEM is interpolated from a point cloud fused from partial point clouds which were filtered with multiscale curvature classification (MCC), hierarchical robust interpolation (HRI), and the LAStools filtering. An important advantage of the proposed methodology is that the selected landscape and datasets properties have been more holistically studied, with applied expert knowledge and automated techniques. The resulting highly applicable DEM fulfils geometrical (numerical), geomorphological (shape), and semantic quality properties.  相似文献   

16.
李雪  张力  王庆栋  石壮  牛雨 《测绘科学》2021,46(2):85-92
针对图像密集匹配生产的数字表面模型(DSM)进行点云滤波,算法对地形依赖大,参数设置复杂,精度不高,后续人工编辑修饰的工作量大、效率低的问题,该文设计了第一套针对DSM滤波、涵盖多种样本形式(栅格、矢量)的航空图像建筑物数据集。针对航空图像建筑物尺度较大等特点,将膨胀卷积加入U-Net构成Dilated U-Net,并综合运用其进行建筑物语义分割,利用分割结果在相应图像密集匹配得到的DSM上滤除建筑物点,然后采用投票插值策略得到过滤掉建筑物点的DSM。实验证明:利用该文网络DU-Net将DSM中非地面建筑物点滤除,Ⅰ类误差在5.8%以内,Ⅱ类误差在2.4%以内,其可以在30 s内完成超过9000万个建筑点与非建筑物点位置的预测,效率高、成本低。DU-Net网络建筑物语义分割过程不受地形、高差的限制,对于其他非地面点的滤波具有一定的借鉴意义。  相似文献   

17.
多级移动曲面拟合LIDAR数据滤波算法   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高城市区LIDAR数据滤波精度, 提出了一种多级移动曲面拟合滤波方法。建立区块网格搜寻及索引机制完成对离散LIDAR点云的标示; 通过建立二次多项式完成参考曲面的拟合, 不同窗口大小获得不同层次的拟合曲面; 设置自适应阈值, 完成地面点与非地面点的判断。精度评价结果表明, 该滤波算法误差在1m以内, 能够满足实际应用的需求。  相似文献   

18.
三维激光扫描仪获得经典地貌的点云数据,需进行滤波剔除地面植被。由于植被茂密区域点云密集或遮挡,地面点极少,无法拟合出地形表面,这部分植被点很难剔除。针对植被茂密区域点云数据的特点,本文提出以窗口化和地形坡度为基础的植被茂密区域点云滤波算法,认为非地形坡度引起的高程差异的两相邻点中,较高的点为非地面点。试验结果表明,本文算法可以很好地去除植被茂密区域中低矮的植被点,保留真实的地面点,提高了植被茂密区域点云滤波的处理精度。  相似文献   

19.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

20.
传统曲面约束滤波算法中,利用最小二乘拟合地形曲面易受种子点粗差影响。针对这一问题,提出基于抗差趋势面的机载激光雷达点云数据滤波方法,首先构建格网索引组织数据,引入抗差趋势面拟合合理的区块地形,通过自适应阈值的设置实现不同区域的自动灵活处理,最终滤除孤立点完善滤波结果。使用ISPRS提供的测区数据进行实验,与传统曲面拟合方法进行对比,实验结果证明,该方法较传统移动曲面拟合法能够得到更加可靠的滤波结果,具备较高实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号