首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron eleetrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH)32x and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell)was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3x105 cell/ml)in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially,the maximal steady-state cell density, 2.9x105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH)32x, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FEC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH)32x/x and EDTA-Fe.  相似文献   

2.
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O2. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O2 before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O2, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.  相似文献   

3.
This study on dynamic changes of culture color,astaxanthin and chlorophylls,inorganic N including N-NO3^-,N-NO2^- and N-NH4^ in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentration showed(1)ast/chl ratio was over 0.8 for brown and red algae,but was usually less than 0.5 for green and yellow algae;(2)N-NO3^-,in general,was unstable and decreased,except for a small unexpected increase in nitrate enriched treatment groups;(3)measurable amounts of N-NO2^- and N-NH4^ were observed respectively with three change modes although no extemal nitrite and ammonia were added into the culture;(4)a non-linear correlation between ast/chl ratio(or color)changes and the levels of N-NO3^-,N-NO2^-,N-NH4^ in H.pluvialis culture;(5)up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown(or red)when N-NO3^-,N-NO2^- and N-NH4^ fluctuated around 30,5,5μmol/L respectively;(6)existence of three dynamic modes of N-NO3^-,N-NO2^- and N-NH4^ changes,obviously associated with initial extemal nitrate;(7)the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L;and(8)0.5-10mmol/L of nitrate was theoretically conducive to cell growth in batch culture.  相似文献   

4.
Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.  相似文献   

5.
Laboratory culture experiments showed that <100μ mol/L nitrate, amonium or mixture of amino acids promote the growth of the red tide organismProrocentrum micans Ehrenb, but that >100μmol/L of ammonium, or mixture of glycine and glutamate was harmful to growth, and that orthophosphate wasP. micans’ main phosphorous source in the ocean. Presence of 80μ mol/L EDTA, 0.5 to 1 μmol/L Fe3+, 1.0 to 20.0 μ mol/L Mn2+ 0.1 to 0.4 μmol/L Co2+ in the culture medium could improve the growth ofP. micans. Vitamin B1 promoted growth, but vitamin B12 and biotin did not. The estimated minimum cell quotas (q o) for nitrogen and phosphorus being 0.74 pmole/cell and 0.045 pmole/cell show that phosphorus (more than nitrogen) limits the growth ofP. micans in the study area. This project was supported by the Natural Science Foundation of Zhejiang Province.  相似文献   

6.
Fe^2+ acted as an accessorial factor for many cellular enzymatic reactions is very important for seaweed growth and development, but the Fe^2+ requirement in nori had not been seen. Porphyra yezoensis cells were separated enzymatically and cultured in a series of sterilized seawater media containing various concentrations of Fe^2+. The growth development and cell were investigated in this work. Through this experiment, two biologically-meant concentration scales were found, one is low concentrations, 12.1-102.1μg/L, 10-100 times than that in seawater, favoring the development of isolated cells of Porphyra and the other was high concentrations, more than 10mg/L inhibiting the cell growth, leading to the deformity and shrinkage of the cells. At the concentration of 50 mg/L, the cells stopped growing and died eventually.  相似文献   

7.
Trace and RE element geochemistry and genesis have been studied with respect to ferromanganese nodules from the sediments of the Pacific, Atlantic and Indian oceans.  相似文献   

8.
In this paper, we investigated the effects of temperature, oxygen, antioxidants, and corn germ oil on the stability of astaxanthin from Haematococcus pluvialis under different storage conditions, and changes in the composition of astaxanthin esters during storage using high performance liquid chromatography and spectrophotometry. Oxygen and high temperatures (22-25~C) significantly reduced the stability of astaxanthin esters. Corn germ oil and antioxidants (ascorbic acid and vitamin E) failed to protect astaxanthin from oxidation, and actually significantly increased the instability of astaxanthin. A change in the relative composition of astaxanthin esters was observed after 96 weeks of long-term storage. During storage, the relative amounts of free astaxanthin and astaxanthin monoesters declined, while the relative amount of astaxanthin diesters increased. Thus, the ratio of astaxanthin diester to monoester increased, and this ratio could be used to indicate if astaxanthin esters have been properly preserved. If the ratio is greater than 0.2, it suggests that the decrease in astaxanthin content could be higher than 20%. Our results show that storing algal powder from H. pluvialis or other natural astaxanthin products under vacuum and in the dark below 4~C is the most economical and applicable storage method for the large-scale production of astaxanthin from H. pluvialis. This storage method can produce an astaxanthin preservation rate of at least 80% after 96 weeks of storage.  相似文献   

9.
Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase (rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II (Fv/Fm), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (ΦPSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest Fv/Fm, ETR, and ΦPSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while Fv/Fm, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.  相似文献   

10.
A study was conducted on Cu, Zn, Cd, Fe, Co and Ni levels in Saanich Inlet anoxic seawater. Data on the concentration of these trace metals and H2S, and other oceanographic parameters were obtained in four cruises. Equilibrium models are presented together with in situ data. The results strongly support the assumption that the solubilities of Cu, Zn, Cd, Fe, Co and Ni are controlled by bisulfide and/or polysulfide complexes. The species of Cu, Zn, Cd and Ni are shown to be Cu(S4) 2 3− and Cu(Sn4S5)3−, Zn(HS) 2 0 and ZnHS 2 , Cd(HS) 2 0 and Ni(HS) 2 0 , respectively. The solid species controlling Fe2+ and Co2+ are respectively the pyrohotites FeS and CoS. The data illustrates that thermodynamic equilibrium has been established in the H2S-controlled seawater of Saanich Inlet, and that equilibrium has not been established in the H2S−O2-coexisted seawater of Saanich Inlet. The lack of equilibrium in the H2S−O2-coexisted seawater is a result of the flushing or mixing of oxygenated seawater with anoxic water. The new species of trace metals are still in the processes of reduction and precipitation. Contribution No. 1428 from Institute of Oceanology, Academia Sinica  相似文献   

11.
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O-2)/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfa...  相似文献   

12.
Cultures of a blue-green algaSpirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed thatS. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth ofS. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· inS. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth ofS. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.  相似文献   

13.
The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32x-9.51 (R^2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86x 0.89 (R^2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 valueand ammonia-N LC50 value followed the regression equation y=2 862.85e-0.08x (R^2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y = 127.15e-0.13x (R^2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.  相似文献   

14.
A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. The specimen cultured in Zarrouk liquid medium was treated with various initial metal concentrations (0, 5, 10, 30, 50 and 100 μg mL−1). The growth of S. platensis was adversely affected by Pb2+ at high concentrations (30, 50 and 100 μg mL−1). However, at low concentrations (5 μg mL−1), Pb2+ could stimulate its growth slightly. The pigment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner. The highest reductions (67% and 53% respectively in chlorophyll α and β carotene) were observed in 100 μg mL−1 treatment group. The LC50 (96 h) of Pb2+ was measured as 75.34 μg mL−1. Apart from a few cases of filament breakages at elevated concentrations (50 and 100 μg mL−1), morphological abnormalities are not specific. Metal bioaccumulation increased with Pb2+ concentrations, but decreased with exposure time. The maximum accumulated amount was 188 mg g−1 dry weight. The bioconcentration factor (BCF) reached to a peak at day 2, followed by a gradual reduction for all the exposure concentrations. S. platensis is able to tolerate considerably high Pb2+ concentrations. Consequently it can be used as a potential species to remove heavy metal from contaminated waters.  相似文献   

15.
The effect of Mg2+, NaCl and citric acid on the accumulation of β-carotene inDunaliella Salina was studied. The experimental results showed that 10.5 mmol/L Mg2+, 5 mol/L NaCl, 3 μmol/L citric acid, and CO2 are favorable forDunaliella Salina cell growth and β-carotene accumulation. After 144 h culture under the above conditions, theDunaliella Salina biomass increased by 7.18 times; β-carotene reached 9.61%. Project 89023990 supported by the Shandong Natural Science Fund.  相似文献   

16.
A great quartity of cosmic dust(spherules) was found in deep-sea sediments during May to July,1983manganese nodule investigations by the R/V“XIANGYANGHONG 16”in the area 7°-11°N,167°-178°Win the Pacific.Comprehensive study of the cosmic dust and determination with Laser Raman MolecularMicroprobe(LRMM) of the molecules in it showed that besides Fe-Fe,Fe~(3+)-O,Fe-Ni,Al-O,Fe-Obr-Si and Si-Onb,it also contained the organic molecules C-H-O and C-H-S-O,various no fixed form molecules of C,CH_2,CH_3 and volatile molecules CO_2,H_2O,OH~- and H_2S,etc…The study result has very important applications for exploring the origin of interplanetary dust parti-cles and life material.  相似文献   

17.
K.  K.  I.  U.  Arunakumarat  张学成 《中国海洋湖沼学报》2009,27(2):383-388
The unicellular cyanobacterium Synechocystis sp. PCC 6803, a model organism known for its unique combination of highly desirable molecular genetic, physiological and morphological characteristics, was employed in the present study. The species was cultured in BG11 liquid medium contained various initial concentrations of Pb2+ and Cd2+ (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experiment was conducted for six days and the metal induced alterations in the ultrastructure, growth and pigment contents were assessed. Alterations in the ultrastructure of the Synechocystis sp. PCC 6803 cells became evident with the increased (>4 mg/L Pb2+) metal concentration. The photosynthetic apparatus (thylakoid membranes) were found to be the worst affected. Deteriorated or completely destroyed thylakoid membranes have made large empty spaces in the cell interior. In addition, at the highest concentration (8 mg/L Pb2+), the polyphosphate granules became more prominent both in size and number. Despite the initial slight stimulations (0.2, 3.8 and 6.5% respectively at 0.5, 1 and 2 mg/L Pb2+), both metals inhibited the growth in a dose-dependent manner as incubation progressed. Pigment contents (chlorophyll α, β carotene and phycocyanin) were also decreased with increasing metal concentration. Cells exposed to 6 mg/L Pb2+, resulted in 36.56, 37.39 and 29.34% reductions of chlorophyll α, β carotene and phycocyanin respectively over the control. Corresponding reductions for the same Cd2+concentrations were 57.83, 48.94 and 56.90%. Lethal concentration (96 h LC50) values (3.47 mg/L Cd2+ and 12.11 mg/L Pb2+) indicated that Synechocystis sp. PCC 6803 is more vulnerable to Cd2+ than Pb2+. Supported by the Chinese Scholarship Council  相似文献   

18.
Batch culture experiments were conducted with a red tide dinoflagellateScrippsiella trochoidea (Stein) Loeblch III collected from Jiaozhou Bay, Shangdong, China. Growth rates and oellular Chl—a were measured in media with iron and manganese ion concentrations controlled at different levels using EdTA-trace metal buffer systems. Cell density increased 3.2 times to 6.5 times over the range of lowest (0 mol/L) to highest (10−5 mol/L) iron and manganese ion concentrations. The range of cell density response was much lower than the range of total available iron and manganese, which was >100—fold that of Fe. This nonlinear relationship indicates that the cells adapt to make more efficient use of iron and manganese under limiting conditions. The cellular Chl—a content maximized after 3 days incubation and then decreased gradually under either iron or manganese limitation conditions. It indicated that the algae gained higher photosynthesis ability when transferred to a new environment. Growth responses to iron and manganese limitation can be both modeled according to the equation of Monod. The half—saturation constant for growth,k, is 4.6×10−8 mol/L for Fe and 5.1×10−8 mol/L for Mn. Our results showed that the iron availability in Jiaozhou Bay does not limit the growth ofS. trochoidea. Contribution No. 2831 from the Institute of Oceanology, Chinese Academy of Sciences. Project 9389008 supported by NSFC; Study supported by PDB6.  相似文献   

19.
A 4.34 liter two-stage air-lift photobioreactor incorporatingAnabaena variabilis ATCC29413 mutant PK84 was used to study H2 production. Results showed that H2 production increased with increasing light intensity from 47 μE/(m2·s) up to 190 μE/(m2·s), but that further increase of light intensity decreased the H2 production because of the inhibition due to the high pO2. The data also indicated that longer argon gas charge resulted in more H2 produced due to the increase of nitrogenase activities and heterocyst frequency, and that more than 1.3 L net H2 was produced from this computer controlled photobioreactor.  相似文献   

20.

A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability of phycocyanin (PC) ofSpirulina maxima showed that iron ions provent decrease of visible light absorbance and fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed by the micro-differential scanning calorimetric method. All results showed iron ions maintain the aggregation stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) with Fe3+ in chloroform was quite different from that of free PCB.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号