首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   13篇
  国内免费   6篇
测绘学   38篇
大气科学   59篇
地球物理   53篇
地质学   179篇
海洋学   40篇
天文学   70篇
综合类   4篇
自然地理   21篇
  2021年   6篇
  2020年   4篇
  2018年   20篇
  2017年   20篇
  2016年   17篇
  2015年   13篇
  2014年   16篇
  2013年   28篇
  2012年   13篇
  2011年   26篇
  2010年   12篇
  2009年   32篇
  2008年   16篇
  2007年   23篇
  2006年   25篇
  2005年   15篇
  2004年   14篇
  2003年   17篇
  2002年   17篇
  2001年   17篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   10篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   4篇
  1987年   11篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1955年   1篇
  1950年   1篇
排序方式: 共有464条查询结果,搜索用时 296 毫秒
71.
Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year\(^{-1}\), and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 \(\upmu \)as year\(^{-1 }\)in \(y_{\mathrm{pol }}\) when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 \(\upmu \)as in the terrestrial pole coordinates.  相似文献   
72.
The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.  相似文献   
73.
Jiang  Nan  Xu  Yan  Xu  Tianhe  Xu  Guochang  Sun  Zhangzhen  Schuh  Harald 《GPS Solutions》2017,21(1):163-175
GPS Solutions - The Chinese BeiDou Navigation Satellite System (BDS) has completed its first milestone by providing coverage of the Asia–Pacific area navigation service since December 27,...  相似文献   
74.
75.

This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011–2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  相似文献   
76.
77.
The dependence of iron and europium partitioning between plagioclase and melt on oxygen fugacity was studied in the system SiO2(Qz)—NaAlSi3O8(Ab)—CaAl2Si2O8(An)—H2O. Experiments were performed at 500 MPa and 850 °C/750 °C under water saturated conditions. The oxygen fugacity was varied in the log f O2-range from −7.27 to −15.78. To work at the most reducing conditions the classical double-capsule technique was modified. The sample and a C—O—H bearing sensor capsule were placed next to each other within a BN jacket to minimise loss of hydrogen to the vessel atmosphere. By this setup redox conditions slightly more reducing than the FeO—Fe3O4 buffer could be maintained even in 96 h runs. Raman spectra showed that the BN was modified by reaction with hydrogen resulting in a low hydrogen permeability. The partition coefficients determined for Eu at 850 °C and 500 MPa vary from 0.095 at conditions of the Cu—Cu2O buffer to 1.81 at the most reducing conditions (C—O—H sensor). In the same f O2 interval the partition coefficient for Fe varies from 0.55 at oxidising conditions to 0.08 at the most reducing conditions. The partitioning of Sm, which was added as a reference for a trivalent REE, does not vary with the oxygen fugacity, yielding an average value for D = 0.07. Lowering the temperature to 750 °C for a given f O2 decreases the partition coefficient of Eu and increases that of Fe. Comparison with published data at 1 atm and at higher temperatures shows that both temperature and composition of the melt have strong effects on the partitioning behaviour. As the change of the partition coefficients in the geologically relevant f O2 range is quite strong, element partitioning of Eu and Fe might be used to estimate redox conditions for the genesis of igneous rocks. Furthermore, by modelling the partitioning data it is possible to extract information about the redox state of the melt. Resulting ferric-ferrous ratios show significant differences from those predicted by empirical models. Received: 14 October 1998 / Received: 5 March 1999  相似文献   
78.
Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号