首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   1篇
测绘学   7篇
大气科学   18篇
地球物理   18篇
地质学   16篇
海洋学   16篇
天文学   3篇
自然地理   5篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   1篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1982年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
11.
Real-time multi-model decadal climate predictions   总被引:1,自引:1,他引:0  
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.  相似文献   
12.
13.
14.
Decadal prediction skill in a multi-model ensemble   总被引:4,自引:3,他引:1  
Decadal climate predictions may have skill due to predictable components in boundary conditions (mainly greenhouse gas concentrations but also tropospheric and stratospheric aerosol distributions) and initial conditions (mainly the ocean state). We investigate the skill of temperature and precipitation hindcasts from a multi-model ensemble of four climate forecast systems based on coupled ocean-atmosphere models. Regional variations in skill with and without trend are compared with similarly analysed uninitialised experiments to separate the trend due to monotonically increasing forcings from fluctuations around the trend due to the ocean initial state and aerosol forcings. In temperature most of the skill in both multi-model ensembles comes from the externally forced trends. The rise of the global mean temperature is represented well in the initialised hindcasts, but variations around the trend show little skill beyond the first year due to the absence of volcanic aerosols in the hindcasts and the unpredictability of ENSO. The models have non-trivial skill in hindcasts of North Atlantic sea surface temperature beyond the trend. This skill is highest in the northern North Atlantic in initialised experiments and in the subtropical North Atlantic in uninitialised simulations. A similar result is found in the Pacific Ocean, although the signal is less clear. The uninitialised simulations have good skill beyond the trend in the western North Pacific. The initialised experiments show some skill in the decadal ENSO region in the eastern Pacific, in agreement with previous studies. However, the results in this study are not statistically significant (p?≈?0.1) by themselves. The initialised models also show some skill in forecasting 4-year mean Sahel rainfall at lead times of 1 and 5?years, in agreement with the observed teleconnection from the Atlantic Ocean. Again, the skill is not statistically significant (p?≈?0.2). Furthermore, uninitialised simulations that include volcanic aerosols have similar skill. It is therefore still an open question whether initialisation improves predictions of Sahel rainfall. We conclude that the main source of skill in forecasting temperature is the trend forced by rising greenhouse gas concentrations. The ocean initial state contributes to skill in some regions, but variations in boundary forcings such as aerosols are as important in decadal forecasting.  相似文献   
15.
The conditional probabilistic scenario analysis combines statistical methods of uncertainty analysis at parameter level with storylines which recognize the deep uncertainty that exists for several underlying trends. The model calculations indicate that cumulative 21st century emissions could range from 800 to 2500 GtC in the absence of climate policy. This range originates partly from the underlying storylines, and partly from the probabilistic analysis. Among the most important parameters contributing to the uncertainty range are uncertainty in income growth, population growth, parameters determining energy demand, oil resources and fuel preferences. The contribution of these factors is also scenario-dependent.  相似文献   
16.
Atlantic Water flow through the Barents and Kara Seas   总被引:2,自引:0,他引:2  
The pathway and transformation of water from the Norwegian Sea across the Barents Sea and through the St. Anna Trough are documented from hydrographic and current measurements of the 1990s. The transport through an array of moorings in the north-eastern Barents Sea was between 0.6 Sv in summer and 2.6 Sv in winter towards the Kara Sea and between zero and 0.3 Sv towards the Barents Sea with a record mean net flow of 1.5 Sv. The westward flow originates in the Fram Strait branch of Atlantic Water at the Eurasian continental slope, while the eastward flow constitutes the Barents Sea branch, continuing from the western Barents Sea opening.About 75% of the eastward flow was colder than 0°C. The flow was strongly sheared, with the highest velocities close to the bottom. A deep layer with almost constant temperature of about −0.5°C throughout the year formed about 50% of the flow to the Kara Sea. This water was a mixture between warm saline Atlantic Water and cold, brine-enriched water generated through freezing and convection in polynyas west of Novaya Zemlya, and possibly also at the Central Bank. Its salinity is lower than that of the Atlantic Water at its entrance to the Barents Sea, because the ice formation occurs in a low salinity surface layer. The released brine increases the salinity and density of the surface layer sufficiently for it to convect, but not necessarily above the salinity of the Atlantic Water. The freshwater west of Novaya Zemlya primarily stems from continental runoff and at the Central Bank probably from ice melt. The amount of fresh water compares to about 22% of the terrestrial freshwater supply to the western Barents Sea. The deep layer continues to the Kara Sea without further change and enters the Nansen Basin at or below the core depth of the warm, saline Fram Strait branch. Because it is colder than 0°C it will not be addressed as Atlantic Water in the Arctic Ocean.In earlier decades, the Atlantic Water advected from Fram Strait was colder by almost 2 K as compared to the 1990s, while the dense Barents Sea water was colder by up to 1 K only in a thin layer at the bottom and the salinity varied significantly. However, also with the resulting higher densities, deep Eurasian Basin water properties were met only in the 1970s. The very low salinities of the Great Salinity Anomaly in 1980 were not discovered in the outflow data. We conclude that the thermal variability of inflowing Atlantic water is damped in the Barents Sea, while the salinity variation is strongly modified through the freshwater conditions and ice growth in the convective area off Novaya Zemlya.  相似文献   
17.
Numerous CTD data obtained in the Eurasian and Makarov basins in the Arctic during the Polarstern (1996), Oden, and Louis S. St. Laurent (1994) international polar expeditions are analysed to describe fronts and intrusions observed in the deep layer (600–1300 m). The hydrological parameters were estimated from available CTD data, which made it possible to identify different types of fronts (baroclinic, thermohaline, and compound types of fronts) and analyze intrusive layering taking into account the peculiarities of the thermohaline structure of fronts. The field data are interpreted using an interleaving model describing the formation of intrusions on the baroclinic and pure thermohaline fronts under conditions of absolutely stable stratification. It is assumed that differential mixing is the main instability mechanism. Estimates of the vertical and lateral diffusivities in the frontal zones of the deep Arctic layer are presented.  相似文献   
18.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   
19.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   
20.
Artificial neural networks (ANNs) are a popular class of techniques for performing soft classifications of satellite images. They have successfully been applied for estimating crop areas through sub-pixel classification of medium to low resolution images. Before a network can be used for classification and estimation, however, it has to be trained. The collection of the reference area fractions needed to train an ANN is often both time-consuming and expensive. This study focuses on strategies for decreasing the efforts needed to collect the necessary reference data, without compromising the accuracy of the resulting area estimates. Two aspects were studied: the spatial sampling scheme (i) and the possibility for reusing trained networks in multiple consecutive seasons (ii). Belgium was chosen as the study area because of the vast amount of reference data available. Time series of monthly NDVI composites for both SPOT-VGT and MODIS were used as the network inputs. The results showed that accurate regional crop area estimation (R2 > 80%) is possible using only 1% of the entire area for network training, provided that the training samples used are representative for the land use variability present in the study area. Limiting the training samples to a specific subset of the population, either geographically or thematically, significantly decreased the accuracy of the estimates. The results also indicate that the use of ANNs trained with data from one season to estimate area fractions in another season is not to be recommended. The interannual variability observed in the endmembers’ spectral signatures underlines the importance of using up-to-date training samples. It can thus be concluded that the representativeness of the training samples, both regarding the spatial and the temporal aspects, is an important issue in crop area estimation using ANNs that should not easily be ignored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号