首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   13篇
  国内免费   2篇
测绘学   4篇
大气科学   22篇
地球物理   57篇
地质学   48篇
海洋学   56篇
天文学   32篇
自然地理   2篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   5篇
  2014年   11篇
  2013年   13篇
  2012年   7篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   9篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   4篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   7篇
  1972年   1篇
  1971年   2篇
排序方式: 共有221条查询结果,搜索用时 328 毫秒
31.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
32.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
33.
Global warming effects on seaweed beds are already perceptible. Their geographical distributions greatly depend on water temperatures. To predict future geographical distributions of brown alga, Sargassum horneri, forming large beds in the northwestern Pacific, we referred to future monthly surface water temperatures at about 1.1° of longitude and 0.6° of latitude in February and August in 2050 and 2100 simulated by 12 organizations under an A2 scenario of global warming. The southern limit of S. horneri distribution is expected to keep moving northward such that it may broadly disappear from Honshu Island, the Chinese coast, and Korean Peninsula in 2100, when tropical Sargassum species such as Sargassum tenuifolium may not completely replace S. horneri. Thus, their forests in 2100 do not substitute those of S. horneri in 2000. Fishes using the beds and seaweed rafts consisting of S. horneri in East China Sea suffer these disappearances.  相似文献   
34.
Earthquake engineering research and development have received much attention since the first half of the twentieth century. This valuable research presented a huge step forward in understanding earthquake hazard mitigation, which resulted in appreciable reduction of the effects of past earthquakes. Nevertheless, the 2011 Tohoku earthquake and the subsequent tsunami resulted in major damage. This paper presents the timeline of earthquake mitigation and recovery, as seen by the authors. Possible research directions where the authors think that many open questions still remain are identified. These are primarily based on the important lessons learned from the 2011 Tohoku earthquake.  相似文献   
35.
A full particle simulation study is carried out on a perpendicular collisionless shock with a relatively low Alfven Mach number (MA = 5). Recent self-consistent hybrid and full particle simulations have demonstrated ion kinetics are essential for the non-stationarity of perpendicular collisionless shocks, which means that physical processes due to ion kinetics modify the shock jump condition for fluid plasmas. This is a cross-scale coupling between fluid dynamics and ion kinetics. On the other hand, it is not easy to study cross-scale coupling of electron kinetics with ion kinetics or fluid dynamics, because it is a heavy task to conduct large-scale full particle simulations of collisionless shocks. In the present study, we have performed a two-dimensional (2D) electromagnetic full particle simulation with a “shock-rest-frame model”. The simulation domain is taken to be larger than the ion inertial length in order to include full kinetics of both electrons and ions. The present simulation result has confirmed the transition of shock structures from the cyclic self-reformation to the quasi-stationary shock front. During the transition, electrons and ions are thermalized in the direction parallel to the shock magnetic field. Ions are thermalized by low-frequency electromagnetic waves (or rippled structures) excited by strong ion temperature anisotropy at the shock foot, while electrons are thermalized by high-frequency electromagnetic waves (or whistler mode waves) excited by electron temperature anisotropy at the shock overshoot. Ion acoustic waves are also excited at the shock overshoot where the electron parallel temperature becomes higher than the ion parallel temperature. We expect that ion acoustic waves are responsible for parallel diffusion of both electrons and ions, and that a cross-scale coupling between an ion-scale mesoscopic instability and an electron-scale microscopic instability is important for structures and dynamics of a collisionless perpendicular shock.  相似文献   
36.
An overview is presented of a 4-year study by the Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes, whose primary aim was to build a bridge between the approaches used for site characterisation (SC) and performance assessment (PA) associated with nuclear waste repositories. Eleven modelling teams representing six national radioactive waste organisations participated in eight modelling exercises whose objectives were: to assess simplifications used in PA models; to determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models; to support the design of SC programmes to assure that the results have optimal value for PA calculations; and to improve the understanding of site-specific flow and transport behaviour at different scales using SC models. The modelling tasks were concerned with flow and transport through single and multiple near-planar features on SC and PA timescales, including the diffusion of solutes into multiple immobile zones adjacent to fracture surfaces. In general, tracer tests provide only limited quantitative constraints on retention parameter values relevant to PA but nevertheless provide insight about the flow and transport processes, which is a key element of the bridge between SC and PA.  相似文献   
37.
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite-II (ADEOS-II) Global Imager (GLI) multi-spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+multi-spectral data, and the resulting NPP estimation is compared with ground data measured in a semi-arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above-ground vegetation NPP is calculated for different vegetation classifications.  相似文献   
38.
Before the Kobe earthquake, an anomalous increase in atmospheric Rn concentration was observed. By separating the measured concentration of atmospheric Rn into three components according to the distance from the monitoring station, the variation of Rn exhalation rate can be estimated for the respective area using the daily minimum and maximum concentrations. The mean rate of Rn exhalation gradually increased in an area of 20 km around the monitoring station, becoming five times higher than normal in the period between October 1994 and the date of the earthquake. This area had a large co-seismic displacement of up to 30 cm, which roughly corresponds to the crustal strain of 10−6-order, and it is considered the main source for the atmospheric Rn prior to the Kobe earthquake. Analyses revealed that the pre-seismic change in the atmospheric Rn concentration exhibited an anomalous pattern which would yield information on the spatial distribution of the mechanical response of the ground.  相似文献   
39.
Physical, chemical, and mineralogical analyses of undisturbed drill cores of pelitic schist from a landslide area in Japan clarified the mechanisms of chemical weathering of pelitic schist. Oxidizing surface water percolates downward and reaches an oxidation front, where chlorite is altered to Al‐vermiculite, graphite and pyrite are oxidized and depleted, and goethite precipitates. Oxidation of pyrite also occurs just below the oxidation front, probably by ferric iron. Pyrite oxidation yields sulphuric acid, which penetrates further downward, interacting with and weakening the rocks. In addition to this chemical weakening, stress release and shearing along schistosities form an incipient shear zone, which propagates to a sliding zone that forms the rupture surface of a landslide. Once a sliding zone has developed, it inhibits downward groundwater flow across it because of its low permeability, slowing the downward propagation of the weathering zone until this filtration barrier is broken by landslide movement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
40.
The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号