首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   25篇
  国内免费   3篇
测绘学   13篇
大气科学   42篇
地球物理   150篇
地质学   175篇
海洋学   90篇
天文学   60篇
综合类   3篇
自然地理   60篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   12篇
  2016年   17篇
  2015年   22篇
  2014年   22篇
  2013年   39篇
  2012年   20篇
  2011年   22篇
  2010年   28篇
  2009年   30篇
  2008年   48篇
  2007年   29篇
  2006年   21篇
  2005年   15篇
  2004年   22篇
  2003年   13篇
  2002年   22篇
  2001年   13篇
  2000年   18篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   9篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   14篇
  1981年   12篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1961年   1篇
  1958年   1篇
排序方式: 共有593条查询结果,搜索用时 31 毫秒
21.
We seek to identify the depth to which water is extracted by the roots in the soil. Indeed, in an isotopic steady-state condition of leaf water, transpiration introduces into the atmosphere a vapour whose isotopic signature is identical to that of root water. In the isotopic models of atmospheric general circulation, it is classically allowed that the signature of transpiration belongs to the meteoric water line. This supposes that the water taken by the roots has escaped with the evaporation of the soil and comes thus from the deep layers of the soil. At the time of experimentation carried out on maize plants (Nemours, Seine-et-Marne, France), this extraction depth was inferred from the comparison between the signature of the water measured on the level of the first internode of the stems of the plants and the isotopic profile of water in the soil. When the flow of transpiration reaches a maximum value, the plant uptakes water resulting from precipitations and which preserves its non-evaporating character after having quickly infiltrated in the deep layers of the soil. This relates to only 55% of the flux transpired by the canopy, the remainder presenting an evaporating character more or less marked according to ambient conditions. This experiment invalidates the classical hypothesis used in isotopic models of general atmospheric circulation in temperate regions. In fact, only half the amount of water vapour transpired by the canopy during the day presents a signature similar to that of the rainwater sampled in deep soil layers. To cite this article: Z. Boujamlaoui et al., C. R. Geoscience 337 (2005).  相似文献   
22.
23.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   
24.
25.
Natural Hazards - Floods are the most frequent natural disaster and pose a very challenging threat to many cities worldwide. Understanding the flood dynamic is essential for developing strategies...  相似文献   
26.
Geoarchaeological investigations on the northeastern shore of Lake Ohrid revealed 3.5 m thick deepwater lacustrine sediments overlying terrestrial vegetation macrofossils, worked wood and abundant potsherds dated to the Late Bronze Age (LBA). Distinct contact of deepwater sediment with the sub-aerial weathered limestone bedrock point to a sudden increase in lake level. According to radiocarbon data, catastrophic flooding occurred shortly after 1214 yr bc. Because the area is located in a highly active seismic zone, we propose that this event was caused by tectonically induced, metre-scale coseismic subsidence related to faults bordering the Ohrid alluvial plain. Moreover, this event coincides well with a dramatic switch in the habitation and settlement strategy in the region. More important, however, is the finding that the age of the proposed massive tectonic event and change in habitation lies within the interval of the proposed ‘earthquake storm’ in the eastern Mediterranean dated to 1225–1175 bc. As the Ohrid-Korça zone belongs to the same tectonic province, a relationship between the abovementioned earthquakes and the proposed event can be expected. This research therefore might provide the first direct evidence of a large-scale earthquake event linkable to the LBA collapse of Europe's first urban civilisation in the Aegean.  相似文献   
27.
Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios of plagioclase separates indicates that the amount of apatite in the inclusions is too low to affect the REE signature of the plagioclase separates. Nevertheless, workers should use caution when attempting REE modelling studies of cumulates having low REE contents, because apatite-bearing inclusions can potentially cause problems.  相似文献   
28.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   
29.
The paper deals with the application of the telluric method and of magnetotelluric soundings including experimental and model data on the localization of tectonic disturbances in connection with the selection of appropriate sites for nuclear plants.  相似文献   
30.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号