首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   51篇
  国内免费   6篇
测绘学   12篇
大气科学   77篇
地球物理   240篇
地质学   344篇
海洋学   80篇
天文学   114篇
综合类   12篇
自然地理   74篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   29篇
  2020年   25篇
  2019年   30篇
  2018年   41篇
  2017年   31篇
  2016年   59篇
  2015年   50篇
  2014年   53篇
  2013年   61篇
  2012年   45篇
  2011年   68篇
  2010年   45篇
  2009年   71篇
  2008年   45篇
  2007年   43篇
  2006年   32篇
  2005年   17篇
  2004年   27篇
  2003年   18篇
  2002年   22篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1974年   2篇
  1972年   5篇
  1964年   1篇
  1960年   1篇
  1959年   1篇
  1942年   1篇
排序方式: 共有953条查询结果,搜索用时 15 毫秒
121.
ABSTRACT

The Australian government’s proposal to expand the Snowy Hydro Scheme to include a second pumped hydro energy storage (PHES) system, and support for feasibility studies for PHES in Tasmania, offer an opportunity to incorporate more intermittent renewable energy generation into the National Energy Market. However, the infrastructure construction required for PHES expansion may have negative effects for biodiversity in subalpine and alpine areas. To identify the potential effects of PHES on biodiversity in Kosciuszko National Park (KNP), this systematic literature review assesses: (i) the key environmental disturbances likely to arise from PHES construction; and (ii) the specific impacts of these construction processes on biodiversity in subalpine and alpine environments. We find that the effects of PHES construction-related disturbances are likely to be negative for subalpine and alpine biodiversity, with impacts including the proliferation of exotic flora, habitat loss resulting from vegetation clearing, altered landscape hydrology and reduced water quality. Management recommendations to limit these impacts are provided and further research is recommended to assess: (i) the effects of PHES on fish populations in alpine reservoirs; (ii) the utility of spoil as artificial habitat for endemic fauna; and (iii) the chemical and physical impacts of spoil dumping in alpine reservoirs.  相似文献   
122.
Prehistoric settlements are usually perceived as being in opposition to the natural development of the landscape. Indeed, for woodland snail assemblages in anthropogenic landscapes in central Europe, considerable impoverishment is typical. However, it remains unclear whether this has been caused by humans only or also by climate effects. From an archaeological point of view, the Moravian Karst is one of the classic prehistorical locations in central Europe, but with a more humid climate than the previously studied anthropogenic areas. To learn more about coexistence of humans and natural forests during the Lateglacial and Holocene, we analysed 11 mollusc successions covering this entire area, a unique data set for such a relatively small area. These mollusc successions show several specific features compared to the standard development known from other mid‐European areas. One is that although the Moravian Karst is not far from the Western Carpathians, Carpathian species appeared relatively late, only during the second half of the Holocene climatic optimum. Similarly, some western European and Alpine elements appeared later than expected. In contrast to this, however, a number of forest species with central European range appeared relatively early during the Lateglacial or Early Holocene. Two even survived the Last Glacial Maximum in the Moravian Karst. This would suggest an early occurrence of forest patches in a mosaic landscape. Humans have apparently inhabited this area since the Lateglacial amongst islands of forests, which later changed during the Boreal and then the climatic optimum into humid canopy forests. Thus, a mosaic of anthropogenic and natural habitats persisting in close vicinity was possible in rugged and humid landscapes practically until the Industrial Revolution.  相似文献   
123.
This study describes normal fault zones formed in foreland arkosic turbidites (the Grès d'Annot Formation, SW French Alps) under deep diagenesis conditions (~200 °C) and highlights the occurrence of two markedly different fault‐rock types: (1) the foliated fault rocks of the Moutière‐Restefond area; and (2) the dilatant fault rocks of the Estrop area. The deformation of (1) is dominated by intra‐ and transgranular fracturing, pressure solution of quartz and feldspar grains and syn‐kinematic phyllosilicate precipitation resulting from feldspar alteration. The combination of these mechanisms results in a strongly anisotropic strain with intense shortening normal to the foliation (pressure solution) and extension parallel to the foliation (quartz‐ and calcite‐sealed extension veins). This deformation implies local mass transfer that may be achieved without (or with limited) volume change. The deformation of (2) is expressed as dilatant quartz‐sealed veins and breccia textures in which the main mechanisms are transgranular fracturing and quartz precipitation. Type (2) implies fault volume increase, isotropy of deformation and mass transfer at distances larger than in type (1). This study discusses the origins of (1) and (2) and shows that the permeability of (1) is anisotropic, with higher values than the host rocks parallel to the Y main deformation axis (i.e. perpendicular to the slip vector), whereas the permeability of (2) is isotropic and equivalent to that of the host rocks.  相似文献   
124.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   
125.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   
126.

The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.

  相似文献   
127.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   
128.
129.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号