首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9532篇
  免费   2251篇
  国内免费   1456篇
测绘学   812篇
大气科学   953篇
地球物理   3378篇
地质学   4584篇
海洋学   1401篇
天文学   864篇
综合类   409篇
自然地理   838篇
  2024年   30篇
  2023年   124篇
  2022年   335篇
  2021年   429篇
  2020年   410篇
  2019年   621篇
  2018年   656篇
  2017年   724篇
  2016年   798篇
  2015年   733篇
  2014年   835篇
  2013年   950篇
  2012年   760篇
  2011年   766篇
  2010年   666篇
  2009年   569篇
  2008年   531篇
  2007年   459篇
  2006年   369篇
  2005年   303篇
  2004年   258篇
  2003年   261篇
  2002年   236篇
  2001年   223篇
  2000年   214篇
  1999年   105篇
  1998年   78篇
  1997年   77篇
  1996年   63篇
  1995年   66篇
  1994年   52篇
  1993年   35篇
  1992年   37篇
  1991年   36篇
  1990年   29篇
  1989年   21篇
  1988年   24篇
  1987年   36篇
  1986年   26篇
  1985年   22篇
  1984年   38篇
  1983年   32篇
  1982年   29篇
  1981年   23篇
  1980年   35篇
  1979年   12篇
  1977年   19篇
  1975年   15篇
  1974年   13篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
991.
Suspended matter is an important indicator of water quality in freshwater systems. The flood‐induced turbidity current plays a dominant role in the seasonal dynamic of suspended matter in the Liuxihe Reservoir (23°45′50″N; 113°46′52″E), a large, stratified reservoir at the Tropic of Cancer in southern China. Field measurements show that loading and distribution of suspended matter in the reservoir differ in typical wet, dry and medium years, as a result of different discharge volumes and water level variation patterns. Using historical data and the practical demand for water supply and flood control, we generalized two feasible reservoir operational modes: flood impounding mode (drawing down the reservoir to a low level before flood events to impound inflow during the flooding season) and moderate level change mode (drawing down the reservoir to a moderate level before flood events, then keeping the level within the flood control level during runoff events). To examine the effects of different operational modes and outlet depths on the reservoir's flood‐induced turbidity current, a numerical simulation model was applied in three types of hydrological conditions. The results show that the mode with moderate drawdown and recharge processes can decrease loading of suspended matter in spring and promote turbidity current release during flood events, and upper withdrawal can improve the effects of turbid water release. We suggest that more attention should be focused on water quality management in the reservoir operation stage, severe artificial water level fluctuation being avoided and selective withdrawal becoming an optional management measure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
There has been limited previous research about Holocene climate variability in the Indian Sector of the Southern Ocean. Here we examine centennial‐scale changes in diatom assemblages and stable isotopic ratios since 10 000 cal a BP in a high‐accumulation‐rate sediment core from the Conrad Rise. Although abundances of dominant diatom taxa (Fragilariopsis kerguelensis and Thalassiothrix antarctica) are comparatively constant, relative abundances of secondary taxa fluctuate. Before c. 9900 cal a BP, winter sea‐ice and cold water covered the Conrad Rise. Following deglaciation the sea‐ice retreated from the Conrad Rise, lagging that of the Atlantic and eastern Indian Sectors by about 1500 a. The Polar Front moved southward during the early Holocene optimum and north Antarctic Zone waters covered the Conrad Rise for about 650 a. After 9300 cal a BP, solar insolation strongly influenced sea surface temperature and primary productivity in the Southern Ocean. In the high‐latitude Indian Sector, productivity increased 1500 a after the onset of late Holocene neoglaciation. Periodic δ18O and cold‐water diatom taxa spikes (at intervals of 200 and 300–500 a, respectively) occurred after 9300 cal a BP, probably associated with solar activity. Fluctuations in short‐term sea surface temperature and cold‐water taxa are synchronous with changes in δD observed in an east Antarctic ice core. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
994.
Large rivers have been previously shown to be vertically heterogeneous in terms of suspended particulate matter (SPM) concentration, as a result of sorting of suspended solids. Therefore, the spatial distribution of suspended sediments within the river section has to be known to assess the riverine sedimentary flux. Numerous studies have focused on the vertical distribution of SPM in a river channel from a theoretical or experimental perspective, but only a few were conducted so far on very large rivers. Moreover, a technique for the prediction of depth‐integrated suspended sediment fluxes in very large rivers based on sediment transport dynamics has not yet been proposed. We sampled river water along depth following several vertical profiles, at four locations on the Amazon River and its main tributaries and at two distinct water stages. Depending on the vertical profile, a one‐ to fivefold increase in SPM concentration is observed from river channel surface to bottom, which has a significant impact on the ‘depth‐averaged’ SPM concentration. For each cross section, a so‐called Rouse profile quantitatively accounts for the trend of SPM concentration increase with depth, and a representative Rouse number can be measured for each cross section. However, the prediction of this Rouse number would require the knowledge of the settling velocity of particles, which is dependent on the state of aggregation affecting particles within the river. We demonstrate that in the Amazon River, particle aggregation significantly influences the Rouse number and renders its determination impossible from grain‐size distribution data obtained in the lab. However, in each cross section, the Rouse profile obtained from the fit of the data can serve as a basis to model, at first order, the SPM concentration at any position in the river cross section. This approach, combined with acoustic Doppler current profiler (ADCP) water velocity transects, allows us to accurately estimate the depth‐integrated instantaneous sediment flux. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
A generalized additive model (GAM) was used to model the spatial distribution of snow depth in the central Spanish Pyrenees. Statistically significant non‐linear relationships were found between distinct location and topographical variables and the average depth of the April snowpack at 76 snow poles from 1985 to 2000. The joint effect of the predictor variables explained more than 73% of the variance of the dependent variable. The performance of the model was assessed by applying a number of quantitative approaches to the residuals from a cross‐validation test. The relatively low estimated errors and the possibility of understanding the processes that control snow accumulation, through the response curves of each independent variable, indicate that GAMs may be a useful tool for interpolating local snow depth or other climate parameters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
996.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s?1 to 629 m3 s?1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
997.
998.
Uncertainty in discharge data must be critically assessed before data can be used in, e.g. water resources estimation or hydrological modelling. In the alluvial Choluteca River in Honduras, the river‐bed characteristics change over time as fill, scour and other processes occur in the channel, leading to a non‐stationary stage‐discharge relationship and difficulties in deriving consistent rating curves. Few studies have investigated the uncertainties related to non‐stationarity in the stage‐discharge relationship. We calculated discharge and the associated uncertainty with a weighted fuzzy regression of rating curves applied within a moving time window, based on estimated uncertainties in the observed rating data. An 18‐year‐long dataset with unusually frequent ratings (1268 in total) was the basis of this study. A large temporal variability in the stage‐discharge relationship was found especially for low flows. The time‐variable rating curve resulted in discharge estimate differences of ? 60 to + 90% for low flows and ± 20% for medium to high flows when compared to a constant rating curve. The final estimated uncertainty in discharge was substantial and the uncertainty limits varied between ? 43 to + 73% of the best discharge estimate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
999.
The main objective of this study was to assess the impact of a suspended cover on the evaporation loss of an agricultural water reservoir (AWR). To this aim, a detailed data collection was carried out in a typical AWR located in south‐eastern Spain during 2 consecutive years. During the first year, the reservoir remained uncovered, while during the second year it was covered with a double black polyethylene (PE) shade cloth. On an annual scale, it was observed that the cover can provide a reduction of evaporation loss of 85%. Two approaches, energy balance and mass transfer, were used to analyse the effect of the cover on the evaporation process. Important modifications were observed on the magnitude, sign, annual trend and relative weight of the components of the energy balance. The changes were ascribed to the strong reduction of net radiation and to the substantial weight of the heat storage and sensible heat flux in the energy balance. A relevant finding was the contrast between the patterns of the annual evaporation curve for open‐water and covered conditions. The mass transfer approach allowed discriminating between the wind‐ and radiation‐shelter effects on the evaporation term. The reduction in water‐to‐air vapour deficit was the main factor explaining the high efficiency of the cover, whereas the reduction of the mass transfer coefficient was a modulating factor that accounted for the wind‐shelter effect. Overall, both approaches provided a sound basis to describe and explain the physical mechanisms underlying the high performance of the tested cover. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
1000.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号