首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   118篇
  国内免费   30篇
测绘学   74篇
大气科学   147篇
地球物理   382篇
地质学   668篇
海洋学   172篇
天文学   330篇
综合类   6篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   38篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   75篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   95篇
  2009年   118篇
  2008年   97篇
  2007年   96篇
  2006年   85篇
  2005年   60篇
  2004年   65篇
  2003年   54篇
  2002年   39篇
  2001年   32篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   22篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1984条查询结果,搜索用时 15 毫秒
91.

Detecting subcropping mineralizations but also deeply buried mineralizations is one important goal in geochemical exploration. The identification of useful indicators for mineralization is a difficult task, as mineralization might be influenced by many factors, including location, investigated media and depth. Here, a statistical method is proposed which indicates chemical elements related to mineralization along a transect. Moreover, the method determines the potential area of the deposit along a transect. The identification is based on general additive models (GAMs) for the element concentrations across the spatial coordinate(s). The log-ratios of the GAM fits are taken to compute the curvature, where high and narrow curvature is supposed to indicate the mineralization area. By defining a measure for the quantification of high curvature, the log-ratios can be ranked, and elements can be identified that are indicative of the anomaly patterns.

  相似文献   
92.
Lovina, classified as an ungrouped ataxite, is controversial and its identity as a meteorite has been questioned. In this work, we use Pb isotopes on targeted troilite nodules in Lovina as a test of its antiquity and provenance. Although precise ages cannot be obtained, LA‐ICP‐MS offers a rapid, straightforward procedure to establish the source of lead, whether ancient (meteoritic) or modern (terrestrial). For nine pristine, unweathered nodules in Lovina, we find a lead isotopic composition of: 206Pb/208Pb = 0.492 ± 0.003 (2σ, MSWD 0.79; 95%) and 207Pb/206Pb = 0.852 ± 0.003 (2σ, MSWD 1.09; 95%) with no detectable uranium. All lead compositions of the troilite fall in the range expected for modern environmental and mantle lead and are distinctly different from the primordial Canyon Diablo Troilite (CDT) composition of ancient meteoritic troilite. Although the origin of Lovina remains unknown, we conclude that lead in the Lovina troilite is unsupported by U decay and originated from a terrestrial source.  相似文献   
93.
The tropical fruit durian in Southeast and East Asia has witnessed a surge in popularity in the past two decades to assume the rank of a fetishized commodity. This research investigates the construction of the multidimensional concept of terroir as applied to the durian economy of Penang, Malaysia based on personal interviews with orchard owners and state government officials to strategically embed the local in the global through the promotion of agritourism. While environmental terroir is a contingent dimension, the construction of a place bound cultural terror is anchored in a strong cultivation tradition, cultivar diversity, and a historical sense of community. This research deepens the cultural terroir dimension in two ways. First, it injects the otherwise aspatial concept of refinement to the cultural terroir narratives of orchard owners allowing the on-farm tourist consumption experience to be more geographically rooted. Second, it conceptually links cultural terroir to the marketing terroir instrument of the Balik Pulau geographical indication; while functioning as a governance tool to prevent fraud and to construct a place bound product valorization and differentiation within an expanding and larger scale durian economy, it also indirectly assists in preserving agro-diversity and local identity.  相似文献   
94.
Thermal experiments under laboratory conditions examined caliche discoloration and thermal conductivity/shock. the results provide information about caliche behavior under thermal conditions, which in some environmental settings will assist archaeologists in identifying discolored caliche from cultural activities as opposed to that from natural range fires. Generally, temperature intensity affects discoloration more than heat exposure duration. Sample colors change markedly towards darker values with carbon reduction between 300° and 700° C caliche glows during heating as the carbon oxidizes; the samples tend towards paler colors, lighter weight, and increased fissures. the thermal conductivity experiment compared heat transference of caliche with other lithic resources of the Llano Estacado, while the thermal shock measured caliche resilience. Metaquartzites and cherts from the Llano Estacado are better heat conductors than caliche, but caliche is far more resilient to repeated thermal shock.  相似文献   
95.
The construction of burrows and movement of sediment by pocket gophers alter archaeological deposits by causing vertical size-sorting of artifacts, destruction of fragile artifacts, disruption of sedimentary structures, and organic enrichment of the subsurface. To evaluate the long-term effects of exposure to burrowing, a simulation was developed based on quantitative information on pocket gopher burrows and rates of sediment movement. Simulation results indicate the development of a distinct stone zone composed predominantly of particles greater than 6 cm after 4000–5000 years, and a logarithmic pattern to the rate of strata disruption. The patterns produced by the simulation compare well with patterns exhibited by actual archaeological deposits belonging to California's Milling Stone Horizon. These results suggest that current notions concerning the Milling Stone Horizon and other aspects of California prehistory may require revision, and that more emphasis must be placed on formation process research in such settings.  相似文献   
96.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
97.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   
98.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   
99.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号