首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   15篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   52篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有227条查询结果,搜索用时 31 毫秒
31.
High sedimentation rates (up to 12 cm/kyear) of laminated organic carbon-rich biogenic limestones in the Tarfaya Basin provide an unusually high (millennial) resolution record of the late Cenomanian oceanic anoxic event (OAE-2). The global positive carbon-isotope excursion across the Cenomanian–Turonian corresponds to 11 light/dark sedimentary cycles. We interpret these cycles as a response to orbital obliquity variation and estimate the duration of the complete excursion as 440 kyear or one long eccentricity cycle. On this timescale, the main increase in 13C values occurred over a short time interval of less than 20 kyear in the late Cenomanian and reached a first maximum approximately 15 kyear prior to the bulk (mainly coccoliths) 18O-derived sea surface maximum temperature that occurs coeval to the extinction of Rotalipora cushmani. Organic carbon-accumulation rates follow obliquity cycles, reaching a maximum approximately 10 kyear after the last occurrence of R. cushmani, then slowly decreasing during the early Turonian. Thus, the maximum temperature and the maximum organic carbon accumulation in the Tarfaya Basin lagged by at least 15 kyear behind the global carbon-isotope shift and a proposed reduction of atmospheric CO2 content. The climate change across the Cenomanian/Turonian boundary probably occurred independent of CO2 levels and may have been controlled by different greenhouse gases (water vapour and methane) and changes in ocean circulation (i.e., opening of the Equatorial Atlantic gateway)  相似文献   
32.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   
33.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   
34.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   
35.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   
36.
This paper evaluates the potential of using cartograms for visualizing and interpreting forecasts of weather-driven natural hazards in the context of global weather forecasting and early warning systems. The use of cartograms is intended to supplement traditional cartographic representations of the hazards in order to highlight the severity of an upcoming event. Cartogrammetric transformations are applied to forecasts of floods, heatwaves, windstorms and snowstorms taken from the European Centre for Medium-range Weather Forecasts (ECMWF) forecast archive. Key cartogram design principles in standard weather forecast visualization are tested. Optimal cartogram transformation is found to be dependent on geographical features (such as coastlines) and forecast features (such as snowstorm intensity). For highly spatially autocorrelated weather variables used in analysing several upcoming natural hazards such as 2m temperature anomaly, the visualization of the distortion provides a promising addition to standard forecast visualizations for highlighting upcoming weather-driven natural hazards.  相似文献   
37.
The Paris Agreement (PA) emphasizes the intrinsic relationship between climate change and sustainable development (SD) and welcomes the 2030 agenda for the global Sustainable Development Goals (SDGs). Yet, there is a lack of assessment approaches to ensure that climate and development goals are achieved in an integrated fashion and trade-offs avoided. Article 6.4 of the PA introduces a new Sustainable Mitigation Mechanism (SMM) with the dual aim to contribute to the mitigation of greenhouse gas emissions and foster SD. The Kyoto Protocol’s Clean Development Mechanism (CDM) has a similar objective and in 2014, the CDM SD tool was launched by the Executive Board of the CDM to highlight the SD benefits of CDM activities. This article analyses the usefulness of the CDM SD tool for stakeholders and compares the SD tool’s SD reporting requirements against other flexible mechanisms and multilateral standards to provide recommendations for improvement. A key conclusion is that the Paris Agreement’s SMM has a stronger political mandate than the CDM to measure that SD impacts are ‘real, measurable and long-term’. Recommendations for an improved CDM SD tool are a relevant starting point to develop rules, modalities, and procedures for SD assessment in Article 6.4 as well as for other cooperative mitigation approaches.

POLICY RELEVANCE

Research findings are relevant for developing the rulebook of modalities and procedures for Article 6.4 of the Paris Agreement, which introduces a new mechanism for mitigation of greenhouse gas emissions and sustainable development. Lessons learnt from the CDM SD tool and recommendations for enhanced SD assessment are discussed in context of Article 6 cooperative approaches, and make a timely contribution to inform negotiations on the rulebook agreed by the Conference of the Parties serving as the Meeting of the Parties to the Paris Agreement.  相似文献   

38.
Ocean Dynamics - With the continued rise in global mean sea level, operational predictions of tidal height and total water levels have become crucial for accurate estimations and understanding of...  相似文献   
39.
We consider two sources of geology‐related uncertainty in making predictions of the steady‐state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined.  相似文献   
40.
Dual-continuum (DC) models can be tractable alternatives to explicit approaches for the numerical modelling of multiscale materials with multiphysics behaviours. This work concerns the conceptual and numerical modelling of poroelastically coupled dual-scale materials such as naturally fractured rock. Apart from a few exceptions, previous poroelastic DC models have assumed isotropy of the constituents and the dual-material. Additionally, it is common to assume that only one continuum has intrinsic stiffness properties. Finally, little has been done into validating whether the DC paradigm can capture the global poroelastic behaviours of explicit numerical representations at the DC modelling scale. We address the aforementioned knowledge gaps in two steps. First, we utilise a homogenisation approach based on Levin's theorem to develop a previously derived anisotropic poroelastic constitutive model. Our development incorporates anisotropic intrinsic stiffness properties of both continua. This addition is in analogy to anisotropic fractured rock masses with stiff fractures. Second, we perform numerical modelling to test the DC model against fine-scale explicit equivalents. In doing, we present our hybrid numerical framework, as well as the conditions required for interpretation of the numerical results. The tests themselves progress from materials with isotropic to anisotropic mechanical and flow properties. The fine-scale simulations show that anisotropy can have noticeable effects on deformation and flow behaviour. However, our numerical experiments show that the DC approach can capture the global poroelastic behaviours of both isotropic and anisotropic fine-scale representations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号